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Plant growth and development is adversely affected by different kind of stresses. One of the major abiotic stresses,

salinity, causes complex changes in plants by influencing the interactions of genes. 
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1. Introduction

Growth and development of plants are affected by various stresses. Salinity is one of the major abiotic stress which

adversely affects the overall growth and yield of crops . It is estimated that >1 billion ha of the world land is salinized

 and continued salinization of the ever-decreasing agricultural land further exacerbates food insecurity as human

population surges. Some of the major world crops such as maize, wheat, rice, tomato and sunflower are reviewed here

where, salinity resulted in the reduction of the yield . The compromised performance causing poor yield could be

due to the reduction in photosynthesis efficiency, chlorophyll, total protein, biomass, stomata closure and increasing the

oxidative stress .

To improve productivity in salt-affected soils, selection and adoption of plant varieties with high salt tolerance has always

been a preferred choice . This selection is based on morphological, physiological and molecular markers. Among

morphological markers, root or shoot morphology, visible early senescence, biomass of grains is some of the important

parameters that are considered. Physiological and biochemical markers examine chlorophyll content, accumulation of

proline, sucrose, stress protectants, membrane stability and hormones content . These physiological markers,

especially hormonal, polyamine and proline changes in plants are important to increase salt tolerance of plants. For

example, such can be boosted by exogenous treatments with hormones, glycine betaine, proline, polyamines,

paclobutrazol, nanoparticles . The molecular markers include salt stress tolerant genes, transcription factors, metabolic

pathway related genes . These molecular markers have led to significant progress in genetic engineering of plants

with salt tolerance . Altogether, all stress markers in plants help in identification of specific genes involved in salt

tolerance .

2. Evaluation of Salinity Stress in Plants by Different Stress Markers

Depending on the concentration and duration, generally, salinity affects all the plants, some of which, like Arabidopsis and

tomato are more sensitive, whereas others such as wheat, rice, rye grass and so forth are less sensitive. Nevertheless,

the changes at molecular, physiological, morphological level under salinity stress have similar trends (either increase or

decrease) for the discussed crop plants. The measurements of Na+ and K+ ions content in plants give strong proof for

salinity stress. Other stress signs may also provide the information related to salinity strength and time of exposure. For

example, the morphological stress markers such as relative weight changes and germination may predict the moderate

and toxic level of salinity, respectively . Monitoring the morphological changes coupled with Machine learning approaches

could prevent salt stress in plants in smart greenhouse. In addition, evaluating salt sensitive (Tomato or Arabidopsis) and

tolerant (salicornia) plants side-by-side in a smart greenhouse could reliably predict the ability of the examined plant to

tolerate the extent of salt stress. For example, if the plant being studied suffers similar to tomato or Arabidopsis while

salicornia growth remains unaffected, the salinity level in the soil is likely to in the range of 100–300 mM NaCl.

The physiological traits such as chlorophyll content, RWC, electrolyte leakage, stomatal conductance, water potential,

proline, glycine betaine change on application of 100 mM NaCl after several days. The molecular markers manifest the

100 mM salt stress level prior to physiological changes. These can be detected in minutes or longer time. The ROS

changes and ROS related enzyme changes are also early recognizable markers for stress .

Generally, the ROS level changes have wave shape changes during the time of stress exposure, this fluctuation of ROS

occurs in stressed and also in normal conditions . Thus, to define the fluctuation in ROS level under moderate

stress, it is better to measure ROS level in time-series rather than image-type measurements, which is a snapshot
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measurement only for one time point . Spectrometric or staining methods are commonly used for ROS detection under

salinity stress  but also the imaging system are rapidly developing for monitoring redox state of the plant cell 

allowing measurement of ROS changes in vivo .

Basically, these molecular, physiological and morphological changes in plants follow the order, where the first changes by

stress will be visualized by molecular, followed by biochemical then physiological and at last by morphological markers

(Figure 1). Additionally, the ROS molecule plays an important role in signaling for stress and thus, these oxidative stress

markers changes are detectable at similar time with molecular markers changes after exposure by salt application.

Therefore, each stress marker has order in terms of time observation after stress, where the oxidative and molecular

stress markers are early sensors for stress compared with other markers but they will not specify stress type.

Figure 1. Scheme of sequence of changes at different levels in plants triggered by salt stress.

3. Prediction and Identification of Stressed Plants Using Deep Learning
Approaches

Machine learning techniques are developing rapidly for agricultural needs such as for plant recognition, plant or fruits

counting, classification of crop types, phenotyping of various plant species, classification of mutants, leaf counting,

identification of vein patterns and leaf characteristics detection of plant diseases, weed control, as well as the prediction of

biotic stresses in plant leaves . Basically, these approaches analyze big data of images, from monitoring various

morphological changes in plants to identifying and/or classifying and/or phenotyping plants . There are so many

different machine learning approaches out there but some are frequently applied in plants, such as Artificial Neural

Networks (ANN), Logistic Regression, Random Forest, Support Vector Machines (SVM), K-Nearest Neighbors (KNN) and

Deep Learning are commonly used in prediction and/or classification and/or detection of stress in plants . Among

these different machine learning approaches, the deep learning models such as Convolutional Neural Networks (CNN),

Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM) are recently on the increase for use in imaging

analysis. This is because the CNN has shown great accuracy in finding specific patterns in image data, so it is mainly

used for identification and classification of different damages in plant leaves, especially for searching the damages caused

by biotic and abiotic stimuli . The other models, RNN and LSTM, are also valuable in the analysis of time series image

data , which is important for prediction of damages in plant leaves. It has also been pointed out that various

combinations of deep learning approaches can be used for classification and prediction of plant characteristics  and

these combinations of different models can be used in the future for accurate diagnosis of signs of stress in plants for

smart greenhouse procedures.

Generally, all these high-throughput phenotyping technologies are based on the analysis of different type of images such

as RGB imaging, near-infrared imaging, infrared thermal imaging and fluorescence imaging . These prediction of

plant diseases and pest attacks or environmental impact on plants by machine learning approaches are mostly focused

on identification of visual symptoms of biotic damage , which are discussed as morphological stress markers. As

mentioned above, these morphological signs appear in plants later than physiological, oxidative and molecular stress

markers (Figure 1). Currently, deep learning approaches are beginning to combine morphological stress markers data

(visible signs in leaves) with physiological stress markers such as transpiration rate, biomass, water content, biochemical

components (sodium concentration), photosynthetic efficiency, caratenoides . However, to the best of our

knowledge, there is still no extensive research on deep learning approaches for predicting abiotic or biotic stress in plants

that use a combination of oxidative, molecular and morphological markers. In addition, using deep learning analysis for

attached or detached leaves and whether these leaves are mature or young for better prediction has not been done yet.

As previously mentioned, physiological and morphological stress marker analysis of older leaves (lower leaves) shows
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greater changes under salinity stress rather than young leaves but it has not yet been shown how this could affect

prediction or identification damage using deep learning approaches. In addition, deep learning approaches for predicting

salinity stress in plants have only been applied for a single plant species (Barley or Spinach or Okra) . It would

be interesting if machine learning approaches were applied in different plant species, specifically to the salt sensitive

(Tomato or Arabidopsis) and tolerant (salicornia) plants, for their identification and prediction of salinity stress in plant .

Additionally, it successfully generated different transgenic plants with different gene modifications, for example, it

generated fused constructions of the gene promoter region with GFP proteins . These transgenic plants  with GFP

protein, could be useful for evaluation of molecular stress markers and prediction of salinity stress in plants. Thus, we

believe that the following suggestions have potential for application through deep learning approaches for stress

prediction in plants: a) analysis of images data with other stress markers such as oxidative and/or molecular markers, b)

emphasis on analysis of mature leaves versus young leaves, c) use of control plant data such as stress-sensitive or

stress-tolerant plants or the transgenic plant promoter fused with GFP and other fluorescent markers.
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