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1. Introduction

Last fact sheets from World Health Organization (WHO), updated to March 2021, reports cancer is the second leading

cause of death worldwide, accounting for nearly 10 million deaths in 2020. Approximately 70% of the deaths from cancer

occur in low- and middle-income countries. Breast, lung, colorectal, and prostate cancers are the most common .

A correct cancer diagnosis is essential for adequate and effective treatment because every tumor is involved in

interactions with non-cancer elements such as gene-environment interactions (GxE), micro-environmental interactions,

and those with the immune system; intercellular interactions within the tumor environment; and intracellular interactions,

such as transcriptional regulation and gene co-expression, signaling and metabolic pathways, as well as protein

interactions (Figure 1) .

Figure 1.  The many levels of interactions found in a cancer system, that can be measured via the different omics

technologies, such as genomics, epigenomics, transcriptomic, and proteomic.

This is the reason why only an integrating framework among different omics layers can gather and organize the

knowledge gained with each experimental approach into mechanistic or semi-mechanistic descriptions of the biological

phenomenon .

Multi-omics model is defined as a biological approach that, by using one or more current high-throughput experimental

techniques, can investigate physiological or pathological phenomena and characterize biomolecular systems at different
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levels. As a matter of fact, each omics contributes on a specific fashion to shape the actual biological phenotype of

interest.

Thus, a comprehensive recognition of molecular networks based on multi-omics data has an important scientific role to

understand the molecular mechanisms of cancer, but this is possible only because of bioinformatics application .

Computational oncology can be defined as an integrative discipline incorporating scientific backgrounds from the

mathematical, physical, and computational fields to get a deeper understanding on malignancies .

In the coming age of omics technologies, next gen sequencing, proteomics, metabolomics, and other high throughput

techniques will become the usual tools in biomedical cancer research. However, their integrative approach is not trivial

due to the broad diversity of data types, dynamic ranges and sources of experimental and analytical errors characteristic

of each omics . The multi-omics systematic study of cancer found many different factors involved in the

development/maintenance of the malignant state such as genetic aberrations, epigenetic alterations, changes in the

response to signaling pathways, metabolic alterations, and many others . The advent of high-throughput technologies

has permitted the development of systems biology. The system biology paradigm tries to analyze cancer as a complex

and intricate pathology and to gain insight into its molecular origin by taking into account the different contributions like

DNA mutations, deregulation of the gene expression, metabolic abnormalities, and aberrant pathway signaling .

The essential basis of systems biology is to consider a biological phenomenon as a system of interconnected elements

such as many complex molecular and environmental components interacting with each other at different levels. For

example, tumor behavior is determined by a combination of changes in genomic information possibly associated with

abnormal gene expression, protein profiles, and different cellular pathways. In this scenario, the complex interaction of

DNA and proteins in replication, transcription, metabolic, and signaling networks are considered the decisive causes for

cancer cells dis-functioning . The integration of multi-omics data provides a platform to connect the genomic or

epigenomic alterations to transcriptome, proteome, and metabolome networks underling the cellular response to a

perturbation. Powerful and sophisticated computational tools can identify the interconnection between genomic

aberrations with differentially expressed mRNAs, proteins, and metabolites associated with cancer-driven cellular

perturbation . If on the one hand this aspect provides an opportunity to better study the cellular response, on the other

hand it poses a challenge for systems biology-driven modelling. Therefore, the next step of systems biology approach

focuses on dynamic models that can deal with thousands of mRNA, protein, and metabolite changes developing effective

strategies to administer personalized cancer therapy . Summarizing, the main goal of the systems biology research

driven by multi-omics data is to develop predictive models that are refined by experimental validations in order to select

patients based on personalized multi-omics data and stratifying them to determine who are most likely to benefit from

targeted therapies .

Definition and detection of cancer-distinctive features allow the investigation of the transition process of a normal cell to

malignancy. Generally, the hallmarks involve phenotypic and molecular changes in several metabolic pathways such as

uncontrolled proliferation by blocking growth suppressors, reprogramming of energy metabolism, evading immune

destruction, resisting cell death, angiogenesis, and metastasis . These variations in cellular machinery are driven by

molecular aberration in several omics layers such as genome, epigenome, transcriptome, proteome, and metabolome

within cancer cells. Specifically, by applying next generation sequencing to cancer cell genomes, it is possible to reveal

how mutations in proliferative genes like B-raf drives the activation of mitogen-activated protein- (MAP-) kinase signaling

pathway underlying an uncontrolled cell proliferation . Molecular aberrations leading to cancer are involved not only in

genomic mutational events but also in the epigenome. In particular, aberrant epigenetic mechanisms can be responsible

for silencing of certain cancer suppressor genes . The multistep processes of invasion and metastasis require a

transition of epithelial cell toward mesenchymal phenotype to colonize distant sites. Recent studies have revealed that

epithelial-mesenchymal transition is induced by specific transcription factors that coordinate the invasion and metastasis

processes . By applying transcriptomics techniques it is possible to investigate the transcription factors involved in

transcription regulatory networks assumed to be activated in malignancy. Moreover, manifestations of cancer hallmarks

also affected cellular metabolism, in fact tumor cells can reprogram glucose metabolism and energy production pathways

detectable with a metabolomics approach .

2. Roles of Computational Approach in Multi-Omics Era

Computational approach plays central roles not only in the analysis of high-throughput experiments, but also in data

acquisition, in processing of raw file derived from several instruments, in storage and management of large streams of

omics information and in the data model integration. Bioinformatics workflow management systems can be used in

developing and in application of a certain pipeline. Examples of such systems include Galaxy , Snakemake ,
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Nextflow , and the general-purpose Common Workflow Language . Several tools for omics data studies are

available in Bioconductor project as packages for the R language  and in Biopython project .

2.1. Data Acquisition

All the omics technologies have a specific role to figure out the complex phenotype of cells especially in complex diseases

like cancer. Knowledge of the biological molecular basis of different cellular signaling pathways does not involve only

genes and transcripts, in fact, proteins and metabolites are particularly important to predict the phenotypic alterations for

diagnosis and prognosis of cancer, and for this reason, in this chapter, we will spend some words about them. Table

1 represents a summary of the applications of different NGS-based and mass spectrometry-based techniques which are

at the basis of different omics data acquisition approaches.

Table 1. Summary of the applications of different techniques for sequencing, which are at the basis of different omics data

acquisition approaches. Genomics, epigenomics, and transcriptomics are based on NGS techniques, whereas proteomics

and metabolomics are driven by mass-spectrometric (LC-MS/MS) method. The main goal of genomics, epigenomics, and

transcriptomics is the screening of genome-wide mutations, the identification of altered epigenomic modifications, and

exploring differential RNA expression, while for proteomics and metabolomics is the identification of differentially regulated

proteins and metabolites (reprinted from reference ).

OMICS TYPE PRINCIPLE APPLICATION BIOINFORMATICS
TOOLS

GENOMICS

Whole exome
sequencing NGS Exome-wide

mutational/analysis BWA
Bowtie

Bowtie2
SNAP
SAM
BAM

Whole genome
sequencing NGS Genome-wide

mutational/analysis

Targeted
gene/exome
sequencing

Sanger sequencing Mutational analysis in
targeted gene/exon

EPIGENOMICS

Methylomics Whole genome
bisulfite sequencing

Genome-wide mapping of
DNA methylation pattern

Methylation-Array-
Analysis
SICER2

PeakRanger
GEM

MUSIC
PePr

DFilter
MACS

ChIP-sequencing NGS Genome-wide mapping of
epigenetic marks

TRANSCRIPTOMICS

RNA-sequencing NGS Genome-wide differential
gene expression analysis Bowtie

STAR
kallisto
SalmonMicroarray Hybridization Differential gene expression

analysis

PROTEOMICS Deep-proteomics Mass-spectrometry Differential protein expression
analysis

MaxQuant
Perseus

METABOLOMICS Deep-metabolomics Mass-spectrometry Differential metabolite
expression analysis

Metab
metaRbolomics

Lipidr

2.1.1. Genomics

To date, genomics approach has highly sustained the finding and investigation of variations at both the germline and

somatic levels thanks to many progresses in genome-exome sequencing techniques, for instance from the Sanger

sequencing-based approaches to the NGS-based sequencing. Bioinformatics has always had a central role in the

analysis of downstream genetic data. For example, in the multiscale scale project “The Cancer Genome Atlas” (TCGA),

researchers used NGS sequencing associated to bioinformatics tools with the aim to discover somatic mutational

landscape across thousands of tumor samples and to understand the complexity underlying different cancer types .

For the analysis of NGS data a sequence aligner tool is used on the sequence data (stored in FASTQ format). Some

popular aligners are the stand-alone BWA , Bowtie , Bowtie2 , and SNAP , with aligned sequences being

stored in SAM (Sequence Alignment Map, text-based) or BAM (Binary Alignment Map) files.

2.1.2. Epigenomics
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Epigenomics is concerned with the genome-wide identification of chemical modifications (i.e., methylation and acetylation

of DNA) which are involved in regulatory mechanisms controlling gene expression and cellular phenotypes . Chromatin

immunoprecipitation (ChIP) assays-coupled NGS (ChIP-seq) and methylation analysis through whole-genome bisulfite

sequencing (WGBS) or bisulfite sequencing (BSSeq) are the most widely used methods in epigenomics analysis . By

exploiting the advances in NGS field, it is now possible to analyze genome-wide methylome patterns at a single

nucleotide resolution and to detect the methylated cytosine bases in genomic DNA. Data from array-based techniques

can be analyzed using dedicated packages such as methylationArrayAnalysis  , whereas for ChIP-seq data processing

tools like SICER2 , PeakRanger , GEM , MUSIC , PePr , DFilter , and MACS  are used.

2.1.3. Transcriptomics

The detection and quantification of RNA transcripts (mRNA, noncoding RNA and microRNAs) is possible owing to the

employment of several transcriptomics techniques. Differently from the static nature of genome, transcriptome

dynamically changes as consequence of temporal cellular and extracellular stimuli. Microarray was the technique of

choice to detect alterations in cellular mRNA levels in a high-throughput manner owing to its ability to quantify the relative

abundance of mRNAs for thousands of genes at the same time. Microarrays are widely used to facilitate the identification

of genes with differential expression between normal and cancer conditions. With the advent of NGS, the identification of

the presence and the abundance of RNA transcripts in genome-wide manner became possible. In contrast to microarrays

technique, RNA-seq does not depend on the transcript-specific probes and thus can effectively perform an unbiased

detection of novel transcripts, also the less abundant, with high specificity and sensitivity. Starting points for RNA-seq

bioinformatics analysis include alignment-based methods, such as Bowtie , and STAR , or alignment-free methods,

such as kallisto  and Salmon . Cancer-related omics experiments often rely on specific, tailor-made analytic pipeline.

TCGA and other repositories give the great opportunity to analyze the omics data by a pan-cancer approach where

different types of cancers can be compared in terms of genomic and transcriptomic landscapes .

2.1.4. Proteomics and Metabolomics

Given the high complexity and dynamic range of proteins, their identification and quantification in large scale are

significantly challenging. Proteomic analyses are applied to identify and quantify the set of proteins present within a

biological system of interest. Progressions of the tandem mass-spectrometry (LC-MS/MS) techniques in terms of

resolution, accuracy, quantitation, and data analysis have made it a solid instrument for both the identification and

quantification of cells proteome . Recently, the advent of cutting edge high-resolution “Orbitrap” mass-spectrometer

instruments associated with powerful computational tools (i.e., MaxQuant  and Perseus ) simplified the genome-

wide detection of all expressed proteins in human cells and tissues paving the way for a first draft of the human proteome

. MS-based proteomics techniques have been extensively applied also to investigate the proteome alteration in

several human cancer tissues . In particular, the study of cancer proteomes is a promising path for biomarkers and

therapeutic targets identification because proteins are the molecular unit from which cellular structure and function arise

.

The application of MS techniques is not restricted to proteomics but rather can be extended to smaller molecules such as

metabolites. Metabolomics is characterized by the quantifications of metabolites that are synthesized as products of

cellular metabolic activities, such as amino acids, fatty acids, carbohydrates, and lipids. Their levels can be dynamically

altered in disease states reflecting aberrant metabolic functions in complex disorders like cancer. Indeed, metabolic

variations are significant contributors to cancer development . This is the reason why cancer metabolomics has

become an important research topic in oncology , with the aim to get new insights on cancer progression and potential

therapeutic targets. Lipidomics is a subset of metabolomics , specifically cancer lipidomics has recently led to the

identification of novel biomarkers in cancer progression and diagnosis . Metabolomics is still an ongoing field with the

potential to be highly effective in the discovery of biomarkers, especially in cancer. This is possible due to the support of

bioinformatics tools like metab package , which provides an analysis pipeline for metabolomics derived from gas

chromatography-MS data, or metaRbolomics package , which is a general toolbox that goes from data processing to

functional analysis. Similarly, the lipidr package  is an analogous framework focused on lipidomics data processing.

2.2. Data Management

The huge amount of data deriving from different omics analyses need to be adequately collected and stored. Challenges

of data management include defining the type of data to be stored and how to store it, the policies for data access,

sharing, use, and finally, long-term archiving procedures . One of the most successful repositories regarding application

of multi-omics approach in cancer is NIHs Genome Data Commons (GDC)  containing all data generated by the

Cancer Genome Atlas (TCGA) project . TCGA project has performed integrative analysis of more than 30 human

cancer types with the aim to create a publicly available comprehensive platform for collecting the molecular alterations in
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the cancer cells at the forefront of multi-omics research . Information about aberrations in the DNA and chromatin of the

cancer-genomes from thousands of tumors have been catalogued by matching with the normal genomes and linking

these aberrations to RNA and proteins levels. Moreover, it provides data for method development and validation usable in

many current projects. In 2020, the collaboration of an international team has completed the most comprehensive study of

whole cancer genomes, significantly improving the fundamental understanding of cancer, and indicating new directions for

developing diagnostics and treatments. The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Project (PCAWG, or

the Pan-Cancer Project) involved more than 1300 scientists and clinicians from 37 countries, analyzed more than 2600

whole genomes of 38 different tumor types. Commenting this aspect, Rameen Beroukhim, an associate member of the

Broad Institute, said: “It was heartening that this very large group was able to bring together disparate resources and work

to come up with some groundbreaking findings”. Additionally, Gad Getz, an institute member and the director of the

Cancer Genome Computational Analysis Group at the Broad Institute, director of bioinformatics at the Massachusetts

General Hospital’s (MGH) Cancer Center and professor of pathology at Harvard Medical School, said: “This large

international effort shows the breadth of the types of research and new biological insight that are possible using whole

cancer genome data”. He continued: “By analyzing the largest collection of whole cancer genomes studied thus far, we

created the most comprehensive catalog of mutational signatures to date, this catalog can be used to understand the

mechanisms that generate mutations and drive cancer in each patient” . The Pan-Cancer Project improved and

developed new methods for exploring not only exome, that represent the 1 percent of the genome, but, also, the

remaining 99 percent of the genome, which includes regions that regulate the activity of genes.

With the genomics, epigenomics, and transcriptomics data from over 11,000 tumors representing 33 of the most prevalent

forms of cancer, the Pan-Cancer Atlas represents an exceptional chance for a comprehensive and integrated analysis to

extend our current knowledge of how a normal cell achieves cancer hallmarks. The pan-cancer analysis involving multi-

omics data in combination with structured bioinformatics and statistical instruments provides an effective platform to

recognize common molecular signatures for the stratification of patients affected by different cancer types and uncover

shared molecular pathology of different cancer types for designing tailored therapies. Investigation of the massive amount

of cancer-specific data deposited in TCGA requires special bioinformatics methods to mine biologically meaningful

information. Several analytic and visualization platforms have been already developed to support the rapid analysis of

TCGA data. For instance, cBioPortal provides the opportunity to visualize, analyze, and download large-scale cancer

genomics data sets . The impulse for open data in the field of biomedical genomics is important to make data available

in public repositories for improving and accelerating scientific discovery, although there are ethical and technological

challenges to be overcome.

2.3. Data Integration

The need to integrate multi-omics data has led to the development of new theoretical algorithms and methods that are

able to extract biologically significant information of clinical relevance.

Unsupervised data integration refers to the cluster of methods that draw an inference from of an unlabeled input dataset.

Learning consists in detecting intrinsic regularities and relationships between the data, without any prior knowledge about

the data itself. Examples of unsupervised techniques are matrix factorization methods, Bayesian methods, network-based

methods, and multi-step analysis. CNAmet is a powerful multi-step integration tool for CNV, DNA methylation, and gene

expression data . The identification of genes which are synergistically regulated by methylation and CNV data, allow

the understanding of biological process behind cancer progression.

Supervised methods involve the use of a dataset for which the phenotype label is known. In this way, when the system

has learned a given task, it will be able to generalize, or to use the experience gained to solve problems that provide the

same basic knowledge. Supervised data integration methods are built via information of available known labels from the

training omics data. The most common supervised techniques are Network-based methods, Multiple Kernel Learning

methods, and multi-step analysis. For example, Feature Selection Multiple Kernel Learning (FSMKL) is a method which

uses the statistical score for feature selection per data type per pathway, improving the prediction accuracy for cancer

detection.

Semi-supervised integration methods, lies between supervised and unsupervised methods, takes both labeled and

unlabeled samples to develop learning algorithm. It is particularly useful in cases where we have a partial knowledge

about the data, or if the collection and sampling phase of labeled data is too expensive to be carried out exhaustively.

Semi-supervised data integration methods are usually graph-based. Graph-based semi-supervised learning (SSL)

methods have been applied to cancer diagnosis and prognosis predictions.
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The combination of different biological layers, with the aim to discover a coherent biological signature, remain a

challenging process. Furthermore, multi-omics combinations are not necessarily capable to achieve better diagnostic

results. Selecting an optimal omics combination is not trivial, since there are economic and technical constraints in the

clinical setting in which such diagnostic tools are to be deployed . Machine Learning Bioinformatic approaches play an

important role in the design of such studies.

2.3.1. Multi-Omics Datasets

Selecting an appropriate dataset that allows for easy manipulation and data calculations could affect the performance of a

computational model and reduce the main obstacles to multi-omics data analysis by improving data science applications

of multiple omics datasets:

The MultiAssayExperiment Bioconductor database  contains the information of different multi-omics experiments,

linking features, patients, and experiments;

The STATegRa dataset  has the advantage of allowing the sharing of design principles, increasing their

interoperability;

MOSim tool  provides methods for the generation of synthetic multi-omics datasets.

2.3.2. The Problem of Missing Data

Integrating large amounts of heterogeneous data is currently one of the major challenges in systems biology, due to the

increase in available data information . The problem of missing and mislabeled samples, is a common problem in large-

scale multi-omics studies . It is common for datasets to have missing data related to some individuals. This often

happens in clinical studies, where patients can forget to fill out a form. In other cases, it is possible that the acquisition of

data reveals to be too expensive, need much time to be obtained or it is difficult to measure. Missing row values for a

table are difficult to manage because most statistical methods cannot be applied directly to incomplete datasets. In recent

years, several approaches have already been proposed to address missing row values . The missRow package

combines multiple imputation with multiple factor analysis to deal with missing data . The omicsPrint method detects

data linkage errors and family relations in large-scale multiple omics studies .

2.3.3. Exploratory Data Analysis

Understanding the nature of the data is a critical step in omics analysis . For this purpose, it is possible to use

exploratory data analysis (EDA) techniques which allow better assessments at a further modeling step. The main

techniques for EDA include cluster analysis and dimension reduction, both widely applied to transcriptomics data analysis

. While  cluster analysis  consists of a set of methods for grouping objects into homogeneous classes, based on

measures related to the similarity between the elements, dimension reduction  is the process of reducing the number of

variables, obtaining a set of variables called “principal.” Both cluster analysis  and dimension reduction  are applied

to cancer studies, as shown in Table 2.

Table 2. Main cluster analysis and dimension reduction package tools applied to cancer studies.

Package Tools Description

OMICsPCA Omics-oriented tools for PCA analysis 

CancerSubtypes Contains clustering methods for the identification of cancer subpopulations from multi-omics data 

Omicade4 Implementation of multiple co-inertia analysis (MCIA) 

Biocancer Interactive multi-omics data exploratory instrument 

iClusterPlus Integrative cluster analysis combining different types of genomic data 

Together with dimensionality reduction and data clustering, data visualization is also an important part of EDA . The

combinations of these three factors make it possible to identify complex patterns, subpopulations within a dataset, and

understand the variability within a phenomenon. Even if the scatter plot is the most common method for data visualization,

there are other visualization tools available. Hexbins  can be used to explore sc-RNAseq data, while Circos diagram 

can be used for the detailed representation of multi-omic data and their position in specific genomic regions.
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Recently it is stated that mapping omics data to pathway networks could provide an opportunity to biologically

contextualize the data. A network representation of multi-omics data can enhance every aspect of the multi-omics analysis

because the functional level of biological description is fundamentally composed of molecular interactions . The main

tools for a network representation of multi-omics data are Pathview  and Graphite .

2.3.4. Machine Learning Models

In recent years, machine learning has been proved to be capable of solving many biomedical problems. These

mathematical models can represent the relationships between observed variables and provide a useful description of

biological phenomena. A ML tool can perform several tasks, including classification task in which the input data are

divided into two or more classes and the learning system produces a model capable of assigning one class among those

available to each input. These models have important biomedical applications , because they are capable of

discriminating between health and disease, or between different diseases outcomes . In a regression task instead, the

output belongs to a continuous rather than discrete domain. These models provide insights into the molecular

mechanisms driving physiological states, reveal interactions between different omics, and have been used in prognostic

tools . In this context, due to the large amounts of heterogeneous data, the removal of non-informative characteristics

which simplifies the model, increases its performance, and makes it less expensive to measure, reveals to be a crucial

process . Feature selection algorithm is a process which selects the variables that contribute most to the prediction,

removing the irrelevant or less important features that can negatively contribute to the performance of the model. Both

classification and regression ML techniques combined with feature selection algorithms have been widely used for cancer

prognosis and prediction . Moreover, many packages, which combine exploratory, supervised, and unsupervised tools,

have been recently implemented in oncology. Table 3 provides a list of some of these new tools.

Table 3. Main packages tools implemented in oncology for machine learning.

Package Tools Description

mixOmics
R package for the multivariate analysis of biological datasets with a specific focus on data exploration,

dimension reduction, and visualization .

DIABLO
Package for the identification of multi-omic biomarker panels capable of discriminating between multiple

phenotypic groups. It can be used to understand the molecular mechanisms that guide a disease .

MOFA Package for discovering the principal sources of variation in multi-omics data sets .

Biosigner
Package for the identification of molecular signatures from large omics datasets in the process of

developing new diagnostics .

omicRexposome
Package that uses high-dimensional exposome data in disease association studies, including its

integration with a variety of high-performance data types .

OmicsLonDA
Package that identifies the time intervals in which omics functions are significantly different between

groups .

Micrographite
Package that provides a method to integrate micro-RNA and mRNA data through their association to

canonical pathways .

pwOmics Package for integrating multi-omics data, adapted for the study of time series analyses .

2.3.5. Functional Enrichment Approaches

The interpretation of a ML model results could be a difficult task. A strategy that can provide readily interpretable results

consist in mapping omic data on functional characteristics, in order to make them more informative and to associate them

with a wider body of biomedical knowledge . Some functional enrichment approaches are listed below:

Over-Representation Analysis (ORA) ;

Gene-Set Enrichment Analysis (GSEA) ;

Multi-Omics Gene-Set Analysis (MOGSA) ;

Massive Integrative Gene Set Analysis (MIGSA) ;

Exploratory Data Analysis (PCA) ;

Divergence Analysis .
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The first two enrichment approaches, ORA and GSEA, are feature extraction methods generally employed as

dimensionality reduction methods. The output of these methods could be the starting points for more complex models

such as interactions among functions. In particular, ORA method is based on a statistical evaluation of the fraction of

pathway components found among a user-selected list of biological components. This input list fulfils the specific criteria

(i.e., log fold change, statistical significance, and cutting-off the majority of components from the input list such as all the

genes of a microarray experiment). GoMiner  is one of the most popular examples of ORA method. It was developed

for gene-expression analysis of microarray data. It takes as input a set of over-/under-expressed genes plus the complete

set list of the microarray, then it calculates over-/under-representation for Gene Ontology categories by means of Fisher’s

exact test. Similarly, GSEA was developed for gene expression analysis from microarray data. The input is a list of ranked

genes in accordance with their differential gene expression between two phenotypic classes. For each set of genes, an

enrichment score (ES) is calculated based on a Kolmogorov–Smirnov pathway-level statistic. Multiple hypothesis testing

is applied for the evaluation of ES significance. In the study of , the GSEA methodology was used to validate the

proliferative role of growth-supporting genes involved in cancer treatment . Multi-omics gene-set analysis (MOGSA) is

an enrichment approach that uses multivariate analysis, which consists in integrating multiple experimental and molecular

data types measured on the same data set. The method projects the features across multiple omics data sets to reduce

dimensional spaces and calculates a gene set score with the most significant features. MOGSA’s multi-omics approach

compensates for missing information in each single data type to find sets of genes not obtainable from the analysis of

single omics data. A different approach is the massive integrative gene set analysis (MIGSA). It allows to compare large

collections of datasets from different sources and create independent functional associations for each omic layer. The

utility of MIGSA was demonstrated in  by applying the multi-omics perspective method to functionally characterize the

molecular subtypes of breast cancer. There are enrichment approaches, such as pathwayPCA and divergence analysis

methods, which use functional aggregation as support for other data analysis studies. In pathwayPCA, exploratory data

analysis is performed using statistical methodologies to analyze the functional enrichment of each omics set and

aggregating them via consensus. pathwayPCA overcomes alternative methods for identifying disease-associated

pathways in integrative analysis. Among various case studies, the model was applied for the identification of sex-specific

pathway effects in kidney cancer for the construction of integrative models for the prediction of the patient’s prognosis and

for the study of heterogeneity in an ovarian cancer dataset. Divergence analysis method instead, is an enrichment

approach that uses functional aggregation to classify large amounts of omics data. The omic profile is reduced to a digital

representation based on that of a set of samples taken from a baseline population. The state of a subprofile that is not

within the basic distribution is interpreted as “divergent.” In  an application of the divergence analysis within the study of

metabolic differences among the interpersonal heterogeneous cancer phenotypes has been described.
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