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Microglia play a critical role in both homeostasis and disease, displaying a wide variety in terms of density,
functional markers and transcriptomic profiles along the different brain regions as well as under injury or
pathological conditions, such as Alzheimer’s disease (AD). The generation of reliable models to study into a
dysfunctional microglia context could provide new knowledge towards the contribution of these cells in AD. In this
work, we included an overview of different microglial depletion approaches. We also reported unpublished data
from our genetic microglial depletion model, Cx3crlCreER/Csf1rflx/flx, in which we temporally controlled microglia
depletion by either intraperitoneal (acute model) or oral (chronic model) tamoxifen administration. Our results
reported a clear microglial repopulation, then pointing out that our model would mimic a context of microglial
replacement instead of microglial dysfunction. Next, we evaluated the origin and pattern of microglial repopulation.
Additionally, we also reviewed previous works assessing the effects of microglial depletion in the progression of A3
and Tau pathologies, where controversial data are found, probably due to the heterogeneous and time-varying
microglial phenotypes observed in AD. Despite that, microglial depletion represents a promising tool to assess

microglial role in AD and design therapeutic strategies

microglia Alzheimer’s disease depletion inflammation

1. Microglia: Micro in Size but Macro in Functions, Highly
Important in Alzheimer’s Disease

Microglia, the primary immune cells of the brain, not only survey the environment for pathogens and debris, but
also play other important roles in the central nervous system (CNS), providing direct sustain to neurons and
supporting myelinogenesis, synaptic plasticity, and the neoformation of vessels L2 These glial cells account for
10-15% of the total cells in the adult CNS in humans B! and 5-12% in mice [l Microglial cells derive from myeloid
progenitors of the yolk sac that at embryonic day 8.5 colonize the mouse fetal brain, and actively proliferate at early
postnatal days until reaching their definitive brain density . Although the number of microglial cells remains
constant during lifetime in mice and humans, a rapid turnover of microglia is maintained by a balanced coupling of
microglial proliferation and apoptotic death &, In adult life, a 28% of microglia are renewed daily, meaning the
lifespan for these cells 4.2 years [8l. Spatial heterogeneity of microglia has been observed in terms of density,
functional markers and transcriptomic profiles. Moreover, microglia suffer transcriptional, morphological, and
functional changes during aging, injury or pathological conditions, as multiple sclerosis, Parkinson’s disease (PD),

and Alzheimer’s disease (AD), among others.
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In this review, we specifically focused on the role of microglia in AD. In patients, AD pathology develops along a
continuum process (ATN), in which the amyloid deposition is considered the earlier event, preceding and triggering
Tau pathology and neurodegeneration B8 However, microglial role in the ATN continuum remains unsolved.
Microglial activation and the loss of their homeostatic functions are considered as critical features in AD
pathogenesis. Recent single-cell transcriptomic studies have identified different microglial subpopulations involved
in AD LJLUA2A3I14] - aithough the functional significance of this microglial diversity is not clearly understood.
Moreover, microglial activation has been widely described in AD transgenic mice, but depending on the models,
timing of pathology development and brain region, activated microglia can adopt a protective role or may acquire a
cytotoxic phenotype, mediating neuronal damage. In amyloidogenic AD mouse models, a subset of activated
microglial cells, named “disease-associated microglia” (DAM), cluster around amyloid plaques establishing a
protective barrier 13126l This phenotype, characterized by the upregulation of genes involved in lysosomal,
phagocytic, and lipid metabolic pathways, is ApoE- Trem2 dependent [BII8I7 and requires an oxidative
metabolism 8. Similar microglial transcriptomic profiles have also been described in several tauopathy models
such as P301S and P301L mice 2220 However, microglial response is diverse in transgenic Tau models as, for
instance, ThyTau22 mice manifest mild microglial activation, whereas P301S mice exhibit a strong microglial
response 29, Although the contribution of microglial cells to the progression and spread of pathogenic Tau species
is still a matter of debate, it has recently been described that TREMZ2 loss of functions increases neuritic pathology

and Tau spreading in amyloidogenic models 2],

Although microglial activation has been reported in several brain regions of AD patients [22l[23124] ‘it js important to
point out that, in the hippocampus, the microglial response is not as strong as reported for amyloidogenic mice and
several Tau models [29[23 Apart from the individual and regional heterogeneity, this apparent discordance between
transgenic models and AD patients may be associated to the aging process itself, the main risk factor for late-onset
AD, and/or to the chronic pathology of AD. Mouse models bearing familial AD mutations are frequently examined at
relatively young ages compared to the elderly AD patients. Nevertheless, our results and others show that
microglial activation increases with age in animals models with amyloid or Tau pathologies 2228l Then, other
comorbidities present in AD patients as vascular deficiencies, hypertension, inflammatory diseases, obesity or
diabetes mellitus could be involved in this distinct microglial response. What is more, transcriptomic studies from
purified microglia showed few overlaps in differentially expressed genes during aging between humans and mice,

hinting that microglia may age differently in both species [,

In the last years, microglial depletion mouse models have provided new insights into the role of these cells in
physiological and pathological conditions. Here, we review different mouse models of microglial depletion, both in
health and in AD, evaluating how reliable they could be as tools to study a context of microglial dysfunction or a
context of microglial renewal. We recapitulate previous published data on the main microglial depletion strategies
and, importantly, we also include unpublished data from our recently developed mouse model of conditional
microglia depletion ( Cx3crl CreER /Csflr fIx/flx ). We also comment on the origin and pattern of microglial
repopulation process. Additionally, we review previous works in regards to the effects of microglial depletion and
repopulation in the progression of AR and Tau pathologies. Outcomes are diverse and sometimes contradictory, but

they open new research lines regarding the mechanisms underlying microglial proliferation and migration
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capabilities. Selective ablation of harmful microglia within suitable time windows and their replacement by

protective microglia may be a promising therapeutic strategy for AD and other neurodegenerative diseases.

| 2. Pharmacological and Genetic Microglial Depletion Models

Microglial viability and proliferation depend on signaling through the colony-stimulating factorl receptor (CSF1R) &
(281[291(30] that belongs to the type IlI tyrosine kinase family, and is activated by two different cytokine ligands, colony
stimulating factor-1 (CSF1) and interleukin-34 (IL-34) BL32I33] However, Csfir is expressed on all myeloid cells 24
3] 5o the signaling interference through this receptor will not only affect microglial cells, but also peripheral
macrophages, probably mediating an immunosuppressive effect. As it is widely known, Csflr knock-out (KO) mice
do not reach adult stage [BI28 so the suppression of this receptor should be carried out in adulthood, either through
the administration of pharmacological inhibitors or through controlled genetic systems. As previously revised,

different approaches give rise to variable depletion percentages, also dependent on the dose and length of
treatments 371(38],

The first pharmacological approach trying to deplete microglial populations used a bisphosphonate drug,
clodronate, packed in liposomes (Clo-Lip), which is rapidly taken up by phagocytic cells inducing their apoptotic
death. Clo-Lip does not cross the blood—brain barrier (BBB), and consequently, needs to be administered by either
intraparenchymal or intraventricular injection. Intraparenchymal Clo-Lip injection depletes between 30 and 60% of
microglia 24 to 72 h after injection, but also produces astrocytic activation, releases proinflammatory cytokine and
alters blood vessel integrity (reviewed in B2). A better pharmacological strategy for microglial elimination was
achieved by highly potent CSF1R tyrosine kinase inhibitors as PLX3397 and PLX647 that, after crossing the BBB,
lead to microglia depletion without consequent inflammation, cytokine storm, or BBB damage, and no negative
effects on mice behavior and cognition 29, Depending on the dose and inhibitor used, different degrees of
microglia depletion were reached and maintained throughout the treatment. Additional specific CSF1R inhibitors as
JNJ-40346527, GW2580 and BLZ945 are available, and different studies have shown their dose-dependent effects
on microglial number and phenotype 2941 Recently, a new and highly specific inhibitor for CSF1R, PLX5622, has
been developed, improving BBB penetrance compared to PLX3397 42, However, and unexpectedly, the effect of
these small CSF1R inhibitors is not restricted to microglia, but also affects the whole macrophage population and
hematopoiesis [43]. Moreover, all these inhibitors are not specific for CSF1R, as they also inhibit three other kinases
as FLT3, PDGFR, and KIT 4! and leads to broad myelosuppression, affecting macrophages, osteoclasts, and
mast cells, among other cells. Additionally, it should be considered that PLX treatments may have a detrimental
effect on neurons as CSF1R signaling has been demonstrated to enhance neuronal survival 42, Actually, Shi et al.
showed that PLX3397 inhibit neurite outgrowth and mildly reduce neuron number in vitro 48, Further experimental
approaches are still necessary in order to specifically deplete microglia using these small CSF1R inhibitors without

affecting other cell types or tissues.

A more selective microglial depletion, with little effects on peripheral tissues, can be achieved by genetic
manipulations based on the combination of cell type specific promoters coupled to suicide genes “4. The initial

approach was based on the expression of the suicide herpes simplex virus thymidine kinase ( HSV-1 TK )
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transgene under the Cd11b promoter 8. The administration of ganciclovir to Cd11b -TK mutant mice induces
apoptosis of microglia, but also of CD11b+ bone marrow cells. To avoid myelotoxicity and the consequent mouse
death, it is mandatory to combine this model with a bone-marrow chimera system, or alternatively administrate
ganciclovir intraventricularly. Other genetic approaches to deplete myeloid population used diphtheria toxin (DT)-
based models, in which myeloid promoter-driven Cre recombinase mouse lines ( Cx3crl Cre ) were crossed with
transgenic mice harboring genes for diphtheria toxin receptor (DTR) downstream of loxP-flanked STOP
sequences. In this model, the administration of DT originated the acute cell death of all myeloid cells expressing
DTR 9 although reached only short-lived depletion, less than 5 days.

On the other hand, the inducible Cx3crl CreER line allows the targeting of microglia in a cell-type-specific and
tamoxifen inducible fashion B9, Two main Cx3crl CreERT2 inducible lines were created separately in which a
tamoxifen-inducible Cre-recombinase is expressed under the control of the Cx3crl promoter: Cx3crl
CreER/+:R26iDT-A/+ and Cx3crl CreER/+:R26iDTR/+ . When activated by tamoxifen, nuclear translocation of the
CreER fusion protein is transient and recombination occurs only for a limited period, so only long-lived cells as
microglia, but not peripheral macrophages with a shorter lifespan, will be depleted. Later, the generation of
conditional knockout mice harboring a loxP-flanked exon within the Csflr gene ( Csflr fix/flx ) has allowed spatial
and temporal control of microglia upon combination with the appropriate Cre lines 1. Additionally, the targeting of
a more specific microglia-signature gene, as Tmem119 , has allowed the generation of Tmem119 CreERT?2 lines
(521 These new genetic models considerably represent an improvement in the manipulation of microglia providing a
valuable tool for the functional study of these cells (reviewed in 37[38)),

| 3. Microglial Depletion as a Model of Microglial Replacement

Due to high mouse microglial proliferation capacity, these depletion models do not mimic a situation of microglial
degeneration, as previously desired, but a context of microglial renewal. The characterization of emerging
microglia’s capabilities will allow us to validate the efficacy of microglial depletion-repopulation strategies as
potential therapeutic tools. This approach will be beneficial when microglia are hyperactive as well as in a context
of microglial degeneration 53] or senescent B4, because in both cases microglia may contribute to neuron toxicity.
As microglial chronic activation is sustained by an oxidative metabolism [ this may compromise oxygen
availability for other cellular populations. Additionally, an excessive microgliosis may induce microglial
mitochondrial damage and be a major source of reactive oxidative species 22, leading to oxidative damage in

neurons, to astrocyte reactivity 26 and to an exacerbation of the inflammatory cascade.

Repopulating microglia appear to fulfil functions of resident microglia and is capable of monitoring the environment
and responding to acute stimuli BABEIBA Adult newborn microglia have been described to gradually regain steady-
state maturity, transcriptionally clustering close to control microglia 2 weeks after depletion 9. Zhan et al. (2019)
also showed that the restoration of microglial homeostatic density requires NF-kB signaling as well as apoptotic
egress of excessive cells 89 |In accordance, Huang et al. (2018) found no transcriptomic differences in

repopulated microglia (2-month after depletion treatment) compared to resident microglia, neither in resting
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conditions nor after LPS challenge 4. More recently, Gratuze et al. (2021) also described a homeostatic gene

signature and equal ability to cluster around amyloid deposits in repopulated microglia in an AD mouse model 62,

In contrast, under 1-month continuous tamoxifen treatment in our Cx3crl CreER /Csf1r flx/flx model, we observed
that emerging microglia displayed an active morphology, with a thickening of cell body and shortening and
thickening of microglial processes ( Figure2 A). Furthermore, the increased expression of Clec7a , Cd45 , Trem2
and Lgals3 corroborated microglial activation after 1-month treatment ( Figure 2 B). We should take into account
that, unlike previously mentioned publications, we maintained the depletion inductor, so a continuous microglial
depletion and repopulation was taking place. An active phenotype is typical of phagocytic microglia, which could be
eliminating cellular debris of dead microglia 29. In this sense, an upregulation of scavenger-associated proteins,
such as Cd36 811, and of the phagocytic marker Cd68 48 have been reported in repopulating microglia. However,
given the small remaining microglial population at some points (for instance, at the end of our acute treatment (
Figure 1 A,B)), the CNS must count with an additional mechanism to eliminate all cellular debris, among which
phagocytic activity of astrocytes has been proposed (631841, Konishi et al. (2020) demonstrated that, after specific
microglial depletion (using Siglech dtr mice), astrocytes, rather than CNS-associated macrophages or circulating
monocytes, clear microglial debris 631,
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Figure 1. Microglial depletion is followed by a rapid repopulation, mediated by microglial activation, in 2-month-old
Cx3cr1CeER/Csf1r™x mice. (A). Representative flow cytometry images for the analysis of microglial cells
(Cd45+Cd11b+) in WT and Cx3cr1CeER/Csf1r™ ™ mice subjected to acute tamoxifen treatment (7 days) and
sacrificed 0, 7, or 14 days after the end of the treatment. (B). Quantification of microglial population after tamoxifen
acute treatment, by flow cytometry, in cortical regions. The 1st cycle: 7 days tamoxifen; 2nd cycle: 7 days of
tamoxifen administration after 14 days of the end of the first cycle. Mice were sacrificed 0, 7, or 14 days after the
end of the corresponding cycle. (C). Microglial population, quantified by flow cytometry, in WT and
Cx3cr1CeER/Csf1r™™X mice subjected to oral tamoxifen administration for 1, 2 or 4 months. Animals were sacrificed
at the end of the treatment. (D-F). Quantification, by gPCR, of mRNA expression of the proliferation marker Ki67,
normalized by Gapdh (D); microglial activation markers Clec7a, Trem2, Cd45, normalized by Tmem119 (E); and
immune infiltration markers Cd3, Cd163, Ccr2 and Ly6c, normalized by Gapdh (F); in the hippocampus of WT and
Cx3cr1CeER/Csf1™/x mice subjected to acute tamoxifen treatment and sacrificed 7 days after. (G). Correlation
between Tmem119 (microglial homeostatic marker) and Cd3 (lymphocytic marker) mRNA expression, quantified by
qPCR and normalized by Gapdh, in the hippocampus of Cx3cr1ER/Csf1r™*/x mice subjected to acute tamoxifen

treatment and sacrificed 7 days after the end of the treatment. See Supplementary Table S1 for Antibodies, Probes

and Methods used. Statistical significance was analyzed using the t-test or the ANOVA test, followed by the Fisher
LSD test.

https://encyclopedia.pub/entry/14753 6/17



Microglia and Alzheimer’'s Disease | Encyclopedia.pub

iy e MRl R © et R0
CxIcr1reERCSFIRMT mice - 1 month oral tamoxifen . " )
G Em R s B e Ay

.._" .- -- A::. 7 .._.._4 .!. -.' H;.-_ ."-_ : |
b T -z:;-% 'g;‘;ﬁéﬁ:w A _'1'..!-":: et MY
¥ i el e Y R AL .'.‘.-:h?_‘_* I..n-J._ Gy ; :
@%w%’ﬁ?‘“ﬁﬁ'“ ST §i % 9pe e
B AT T L ek ara e ‘&“‘ﬁ s 3’?
t@ﬁ R War S e BT L

A R Rer TET T wh

& 5
B Clec7a Tram2 Cd45 Lgals3
5 5 —— E 5 g B P02 a0 pe0.054
4 . 5 1 LM
E-ln- E e "y g o = a0 .
& an) H 3 - H g
3" 2. 57 & 3 T S -
E 20+ ‘_. E 24 .. E s E
i 1= "y i 14 ﬁ;‘! - § 24 h . i 16
i ey et e 2 o |-_-=#T._
WT 1 month WT 1 mondh WT 1 month WT 1 month

Figure 2. Microglial activation after 1-month oral tamoxifen administration in Cx3cr1¢eER/Csf1r™x mice. (A). Ibal
immunostaining in WT and Cx3cr1eER/Csf1rx mice subjected to 1-month of tamoxifen treatment. CA1, field
CA1l of hippocampus; CA3, field CA3 of hippocampus; DG, dentate gyrus; so, stratum oriens; sp, stratum
pyramidale; sr, stratum radiatum; m, molecular layer; g, granular layer; h, hilus. Scale bars: A1, A3 200 um; A2, A4
10 pm. (B). mRNA expression of microglial activation markers (Clec7a, Trem2, Cd45 and Lgals3), quantified by
gPCR and normalized by Tmem119 (microglial homeostatic marker), in the hippocampus of WT and
Cx3cr1CreER/Csf1r™x mice treated with tamoxifen for 1 month. See Supplementary Table S1 for Antibody, Probes

and Methods used. Statistical significance was analyzed using the t-test.

Finally, when drawing conclusion from chronic depletion models, we must be aware that changes observed are
difficult to be unequivocally addressed to one factor. They may be due to: (i) a reduction in total microglial levels,
(i) a reduction of previous, sometimes burnt out, microglia, or (iii) the presence of emerging microglia whose
characteristics are still not thoroughly described. Same challenges will occur with other state-of-the-art microglial
manipulation techniques, such as chimeric mice. These models have been proposed as emerging tools to
substitute exhausted microglia and/or to characterize human microglial response in AD pathology. Under this

approach, mouse microglia is depleted to be replaced with human iPS-derived microglia in immunosuppressed
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mice B3, After this manipulation, alterations in the progression of AD pathologies could be addressed to: (i) a
reduction in the number of mouse microglia, (ii) the effect of human microglia, (iii) the immunosuppression of mice,
(iv) the interaction between mouse and human microglia. Additionally, taking into account the stablished interaction
between microglia and astrocytes 68 in depletion as well as in chimeric mice, modifications in the pathologies may
also be caused by changes occurred in other glial cells. In essence, although they are promising tools, we should

be cautious when drawing conclusions from these models.

| 4. Do Microglia Refresh or Poison AD Progression?

In order to further characterize microglial role in AD, microglial depletion models are being combined with AD
mouse models bearing either AR and/or Tau pathologies ( Table 1 ). Currently, controversial data are found and

new studies are needed to clarify if microglia is beneficial or detrimental to AD pathology.

Table 1. Relevant results in AD mouse models of microglia depletion. Mouse models used and main outcomes are

shown.
Pathology Depletion Model Outcomes References
50% microglia depletion.
AB PLX5622 in 5XFAD mice, from 4- to 5-month- Reduction of microgliosis and 67]
old. plague burden, enhancement of
neuritic dystrophies.
. . Around 50% microglia depletion.
AB PLX3397 in 5xFAD m;g, from 9- to 10-month- Decrease in A deposition and 68]
' rescue of dopaminergic signaling.
PLX5622 in APP/PSL1 mice, from 12- to 13- ~ Diminution of feukotriene o
AR biosynthesis and the neuronal 5-
month-old. .
lipoxygenase.
97% microglia depletion.
AB PLX5622 in 5XFAD mice from 1.5 to 4- or 7- Reduction of plaque depositiop, [42]
month-olds. but increase of cerebral amyloid
angiopathy formation.
70-80% microglia depletion.
PLX3397 in 5xFAD mice from 2- to 5-month- R(.aductlor? .Of |ntraneuronal. . [70]
AB old amyloid, neuritic plaque deposition
' and improvement in cognitive
functions (fear conditioning tests).
Diphtheria toxin in 15 months-old 90% depletion. No changes in the
AB Cx3cr1CeER*:R26PTR*IAPPXPS1 mice, for 1— number of AB plaques, but an (1]
2 weeks. increase in size.
AR GWS2580 in APP/PS1 mice from 6- to 9- 30% reduction of microglia. No (49]

month-old.

changes in the number of Ap
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Pathology Depletion Model Outcomes References
plagues. Improved performance in
memory and behavioral tasks.

90% microglia depletion. No
alterations in B-amyloid levels or
plaque load, but rescue of [72]

AB PLX3397 in 5XxFAD from 10- to 11-month-old. - .
dendritic spine loss and
improvements in contextual
memory.
o i . .
AB and 30% microglia depletion. No

PLX5562 in 3xTg mice for 3 months. changes in total or phosphorylated (23]

Tau . -
Tau. Improvements in cognition.
81% microglia depletion. Higher
Ap and PLX3397 from 5.5- to 7-month-old in r(_aductlor? " nqn-plaque— [74]
- . associated microglia. No changes
Tau 5XFAD/PS19 Tau -injected mice. . o
in AB pathology, reduction in Tau
pathology and neurodegeneration.
Improved cognitive and neuronal
AB and PLX3397 from 6- to 9-month-old in 5xFAD deficits. Enhancement of Tau [62]
Tau mice injected with AD-Tau. seeding and spreading around
plaques.
o i . .
Cx3cr1CreER/R26DTAIRTAU mice, treated Cﬁg;" gciaoggigipgff'%%g&
Tau with tamoxifen for 2—3 months at different g g ' (5]
phosphorylated or total
ages.
aggregated Tau levels.
Total microglia depletion.
PLX3397 in P301S APOE E4 mice from 6- to Protection from brain volume loss [46]
Tau . .
9-month-old. and neurodegeneration. Reduction
of Tau pathology progression.
30% microglia depletion. No
Tau PLX3397 in rTg4510 mice, from 12- to 15- changes in Tau burden, cortical [76]
month-old. atrophy, blood vessels or glial
activation.
(a) Clodronate !lposomes and PLX3397 in 70-80% (a) and 90% (b) microglia
Tau AAV-GFP/Tau injected C57BL/6 mice. (b) deletion. Reduction of bhospho- [77]
PLX3397 in PS19 mice. In both cases, from P ' - phosp

3.5- to 4.5-month-old.

Relevant results in AD mouse models of microglia depletion. Mouse models used and main outcomes are shown.

Studies of microglial depletion in other CNS pathologies showed similarly controversial results. Rice et al. (2017)

and Acharya et al. (2016) described significant improvements subsequent to microglial depletion in neuronal
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damage models 879 |n the same line, Li et al. (2017) showed neuroprotection following microglial depletion in a
model of intracerebral hemorrhage 89, However, other publications reported an increase in neuroinflammation and

brain damage after microglial depletion in ischemia models [B1I[82],

Therefore, novel approaches to increase microglial renewal may be a promising tool to assess microglial role in the

ATN continuum and to design potential therapies for AD.
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