Copper(II) Complex

Abstract

A dinuclear copper(II) complex of (1) (where \(\text{bipy} = 2,2'\text{-bipyridine}, \text{bzt} = \text{benzoate} \) and \(\text{ox} = \text{oxalate} \)) was synthesised and characterised by diffractometric (powder and single-crystal XRD) and thermogravimetric (TG/DTG) analyses, spectroscopic techniques (IR, Raman, electron paramagnetic resonance spectroscopy (EPR) and electronic spectroscopy), magnetic measurements and density functional theory (DFT) calculations. The analysis of the crystal structure revealed that the oxalate ligand is in bis(bidentate) coordination mode between two copper(II) centres. The four other positions of the coordination environment of the copper(II) ion are occupied by one water molecule, a bidentate \(\text{bipy} \) and a monodentate \(\text{bzt} \) ligand. An inversion centre located on the \(\text{ox} \) ligand generates the other half of the dinuclear complex. Intermolecular hydrogen bonds and pi-pi for the organisation of the molecules in the solid state. Molar magnetic susceptibility and field dependence magnetisation studies evidenced a weak intramolecular–ferromagnetic interaction (\(J = +2.9 \text{ cm}^{-1} \)) between the metal ions. The sign and magnitude of the calculated/ value by density functional theory (DFT) are in agreement with the experimental data.

1. Introduction

Copper(II) complexes are interesting in coordination chemistry because of their vast applicability for bioinorganic purposes and synthesis of metallo drugs, catalysis and magnetism. Concerning molecular magnetism, it is known that the magnetic interaction between two or more copper(II) centres is strongly dependent on the nature of the bridging ligand that works like a magnetic exchange pathway. Among these ligands, the oxalate ion, \(\text{ox}^2^- \), for example, is well known for its capability to create adequate magnetic exchange pathways for ferro- and antiferromagnetic interactions in oligonuclear copper(II) compounds. The combination of oxalate and copper(II) ions leads to a large structural variety including different nuclearities such as mononuclear, dinuclear, trinuclear, tetrnuclear and hexanuclear species and coordination polymers. This class of oxalate-bridged compounds is noteworthy in magnetic applications, as it may comprise many other transition metal ions such as \(\text{Mn}^{II}, \text{Fe}^{III/I}, \text{Co}^{II}, \text{Ni}^{II}, \text{Cr}^{II/III}, \text{V}^{IV} \) and \(\text{Ru}^{II} \).

2. Dinuclear Copper(II) Complexes

The dinuclear copper(II) complexes, which contain only one unpaired electron per metallic ion, are the most straightforward systems to investigate the through-ligand electron exchange mechanism from experimental and theoretical perspectives. It is well known that the nature and strength of the magnetic interactions in dinuclear complexes including simple inorganic and extended organic bridging ligands such as hydroxo, azide, aromatic dicarboxylate, diamine, oxalate and related derivatives are highly dependent on the nature of the chelating terminal blocking ligands, which prevent complex polymerisation. Furthermore, the variation in the spatial arrangement of terminal ligands may change the orbital overlap angle between the copper(II) and the bridging ligand, leading to different types of magnetic interactions.

Regarding oxalate-bridged copper(II) compounds, the ferromagnetic or antiferromagnetic behaviour is determined by the overlap between the two magnetic orbitals. Poor overlap through oxalate leads to a weak antiferromagnetic interaction. On the other hand, if the overlap is zero, one could expect a ferromagnetic coupling. Steric hindrance arising from the volume of the ancillary ligands leads to different orientations of the magnetic orbitals concerning the bridge plane, hence generating a different magnitude and nature of the magnetic interaction among the copper(II) centres.

Although a variety of oxalate (\(\text{ox}^2^- \))-bridged copper(II) complexes can be found in the literature, just a few contain more than one bulky ligand besides the oxalate bridge. A detailed search carried out in the Cambridge Structural Database (CSD) for oxalate-bridged copper(II) complexes with \(\text{ox}^2^- \) in bis-bidentate coordination mode displayed a total of 423

Contributors:
Dayane Reis, Francielli Santana
Submitted by: Dayane Reis
results, of which 86 correspond to dinuclear complexes that possess two additional ligands besides Ox^{2-}. Out of 86 structures, 66 contain pentacoordinate metal ions bound to only one type of organic ligand such as pyridine, $2,2'$-bipyridine, phenanthroline, ethylenediamine, pyrazole and imidazole and their derivatives, the coordination sphere being completed by simple inorganic ions such as nitrate, chloride, hydroxide and perchlorate or by solvent molecules such as water, methanol, dimethylformamide, tetrahydrofuran or acetonitrile. In the 20 remaining structures, all of which have been reported more recently, the metal ions are hexacoordinate and the chemical composition of the complexes, regarding the presence of at least one organic ligand, solvent molecules and simple inorganic ions, is similar to that observed for the pentacoordinate species. Exceptions are found when tetradentate ligands direct hexacoordination, decreasing the need for other molecular entities to complete the coordination sphere of the copper(II) ion. Therefore, such systems show high structural and electronic versatility, which can be modulated by an appropriate choice of ligands other than the Ox^{2-} bridge.

Herein the synthesis of a new heteroleptic oxalate-bridged copper(II) dinuclear complex $\left[\text{Cu} \cdot \text{bipy} \cdot \text{bzt} \cdot \text{OH}_2 \cdot \text{Ox} \right]_2 (\mu - \text{Ox})$ (1) (where bipy = $2,2'$-bipyridine, bzt = benzoate and ox = oxalate) is reported, in which the coordination environment of the metal ion is described as distorted octahedral with the unusual coordination of two relatively bulky ligands, a bidentate $2,2'$-bipyridine and a monodentate benzoate, in addition to one water molecule. Structural correlations on how the orientation of the magnetic orbitals of the CuII ions is affected by the crystal field in 1 and the nature of magnetic interactions were investigated. We have also carried out theoretical calculations on the electronic structure and the electron paramagnetic resonance spectroscopy (EPR) spectra to bring light into its magnetic properties.

The reaction between copper(II) acetate monohydrate, benzoic acid, $2,2'$-bipyridine and oxalic acid dihydrate in methanol gave the bluish-green prismatic shape crystals of $\left[\text{Cu} \cdot \text{bipy} \cdot \text{bzt} \cdot \text{OH}_2 \cdot \text{Ox} \right]_2 (\mu - \text{Ox})$ (1) in high yield, ca 90%, from a reproducible synthetic methodology (Scheme 1). Powder X-ray diffraction (PXRD) analysis revealed good correspondence between the simulated and experimental diffraction patterns.

3. Conclusions

A new dinuclear copper(II) complex was synthesised and characterised. The crystal structure showed that $\left[\left[\text{Cu} \cdot \text{bipy} \cdot \text{bzt} \right] \cdot \text{OH}_2 \cdot \text{Ox} \right]_2 (\mu - \text{Ox})$ (1) is centrosymmetric and contains two rather bulky ligands, benzoate and $2,2'$-bipyridine, while the majority of the complexes of this class contain just one bulky ligand. The magnetic interaction predicted by EPR was confirmed by magnetic measurements and indicated ferromagnetic coupling between the metal centres. The determined J value was supported by DFT calculations. Therefore, the present study highlights the importance of the oxalate bridge as a magnetic-exchange pathway, and how bulky ancillary ligands can affect the magnetic response.

References

1. Ke-Bin Huang; Zhen-Feng Chen; Yan-Cheng Liu; Xiao-Li Xie; Hong Liang; Dihydroisoquinoline copper(ii) complexes: crystal structures, cytotoxicity, and action mechanism. RSC Advances 2014, 5, 81313-81323, 10.1039/c5ra15789g.
2. Mohammad Usman; Farukh Arjmand; Rais Ahmad Khan; Ali Alsalme; Musheer Ahmad; Mousumi Sen Bishwas; Sartaj Tabassum; Tetranuclear cubane Cu₄O₄ complexes as prospective anticancer agents: Design, synthesis, structural elucidation, magnetism, computational and cytotoxicity studies. *Inorganica Chimica Acta* 2018, 473, 121-132, 10.1016/j.ica.2017.12.039.

3. Ria Sanyal; Priyanka Kundu; Grigory Zhigulin; Bipinibhari Ghosh; Elena Ryachgova; Sergey Yu. Ketkov; Shyamal Kumar Chattopadhyay; Ennio Zangrando; Debasis Das; Catecholase activity of Mannich-based dinuclear Cu II complexes with theoretical modeling: new insight into the solvent role in the catalytic cycle. *New J. Chem.* 2015, 40, 6623-6635, 10.1039/C6NJ00105J.

4. Arla Parween; Sumita Naskar; Antonio J. Mota; Arturo Espinosa Feroa; Shyamal Kumar Chattopadhyay; Eric Rivièere; William Lewis; Subhendu Naskar; C i -Symmetry, [2 × 2] grid, square copper complex with the N 4 , N 5 -bis-(4-fluorophenyl)-1H-imidazole-4,5-dicarboxamide ligand: structure, catecholase activity, magnetic properties and DFT calculations. *New J. Chem.* 2016, 41, 11750-11758, 10.1039/C7NJ01667E.

5. Isabel Castro; María Luisa Calatayud; Consuelo Yuste; María Castellano; Rafael Ruiz; Joan Cano; Juan Faus; Michel Verduguer; Francisco Lloret; Dinuclear copper(II) complexes as testing ground for molecular magnetism theory. *Polyhedron* 2019, 168, 66-77, 10.1016/j.poly.2019.04.023.

9. Ai-Li Zheng; Zhan-Feng Ju; Wei Li; Jie Zhang; Ferromagnetic dinuclear copper(II) complex based on bridging oxalate and bipyridinium ligands. *Inorganic Chemistry Communications* 2006, 9, 489-492, 10.1016/j.inoche.2006.02.010.

10. Oscar Castillo; Antonio Luque; Pascual Román; Francesc Lloret; Miguel Julve; Syntheses, Crystal Structures, and Magnetic Properties of One-Dimensional Oxalato-Bridged Co(II), Ni(II), and Cu(II) Complexes within-Aminopyridine (n = 2–4) as Terminal Ligand. *Inorganic Chemistry* 2001, 40, 5526-5535, 10.1021/ic0103401.

13. Conor Brennan; Jorunn Sletten; Brita Vangdal; D. Paul Rillemma; Francesc Lloret; Miguel Julve; Syntheses, crystal structures and magnetic properties of new oxalato-, croconato- and oxalato-bridged dinuclear copper(II) complexesElectronic supplementary information (ESI) available: Stereoview of the structure of compound 2 (Fig. S1) and X-ray data as described in the text. See http://www.rsc.org/suppdata/nj/b3/b301212n/. *New J. Chem.* 2002, 27, 1775-1783, 10.1039/b301212n.

14. Elena Melnic; Victor Ch Kravtsov; Karl Kramer; Jan Van Leusen; Silvio Decurtins; Shi-Xia Liu; Paul Kögerler; Svetlana G. Baca; Versatility of copper(II) coordination compounds with 2,3-bis(2-pyrimidylcarbonyl)amidatecopper(II): synthesis, crystal structures and magnetic properties. *Inorganic Chemistry* 2005, 44, 8229-8238, 10.1021/ic049598b.

17. Consuelo Yuste; Laura Cañadillas-Delgado; Ana Labrador; Fernando S. Delgado; Catalina Ruiz-Perez; Francesc Lloret; Miguel Julve; Low-Dimensional Copper(II) Complexes with the Trinucleating Ligand 2,4,6-Tris(2-pyridylamine)-1,3,5-triazine: Synthesis, Crystal Structures, and Magnetic Properties†. *Inorganic Chemistry* 2009, 48, 6630-6640, 10.1021/ic900599g.

19. Douglas Hideki Nakahata; Raphael De Paiva; Wilton R. Lustri; Camila M. Ribeiro; Fernando Pavan; Gisele G. Da Silva; Ana Lúcia New J. Chem. 2016, 41, 11750-11758, 10.1039/C7NJ01667E.
22. Catalin Maxim; S. Ferlay; Cyrille Train; Binuclear heterometallic (M(III)-Mn(II)) (M = Fe, Cr) oxalate-bridged complexes associated with a bisamidinium dication: a structural and magnetic study. *New J. Chem.* 2010, 35, 1254, 10.1039/c0nj00976h.
25. Ioannis Bratsos; Barbara Serli; Ennio Zangrando; Nikos Katsaros; Enzo Alessio; Replacement of Chlorides with Dicarboxylate Ligands in Anticancer Active Ru(II)-DMSO Compounds: A New Strategy That Might Lead to Improved Activity. *Inorganic Chemistry* 2007, 46, 975-992, 10.1021/ic0613964.
30. Laurence K. Thompson; Santokh S. Tandon; Francisco Lloret; Juan Cano; Miguel Julve; An Azide-Bridged Copper(II) Ferromagnetic Chain Compound Exhibiting Metamagnetic Behavior. *Inorganic Chemistry* 1997, 36, 3301-3306, 10.1021/ic970023n.
32. Marijana Jurč; Damir Pajč; Dijana Žilić; Boris Rakvin; Dalibor Milić; Pavica Planinčić; Synthesis, crystal structures and magnetic properties of the oxalato-bridged single CuII-CuII and cocrystallized CuIIZnII systems. Three species (CuCu, CuZn, ZnZn) in the crystalline lattice. *Polyhedron* 2015, 98, 26-34, 10.1016/j.poly.2015.05.034.
33. Somen Goswami; Soumen Singha; Rajat Saha; Anupam Singh Roy; Manirul Islam; S. Kumar; A bi-nuclear Cu(II)-complex for selective epoxidation of alkenes: Crystal structure, thermal, photoluminescence and cyclic voltammetry. *Inorganica Chimica Acta* 2019, 466, 352-360, 10.1016/j.ica.2018.10.066.
36. M. Luisa Calatayud; Marta Orts-Arroyo; Miguel Julve; Francisco Lloret; Nadia Marino; Giovanni De Munno; Rafael Ruiz-Garcia; Isabel Castro; Magnetostuctural correlations in asymmetric oxalato-bridged dicopper(II) complexes with polymethyl-substituted pyrazole ligands. *Journal of Coordination Chemistry* 2018, 71, 657-674, 10.1007/0095872.2017.1421950.
38. Chen Liu; Khalil A. Abboud; Crystal structures of µ-oxalato-bis-[azido-(hista-mine)]-copper(III) and µ-oxalato-bis-[(dcyan-amido)(hista-mine)]-copper(III). *Acta Crystallographica Section E Crystallographic Communications* 2015, 71, 1379-83, 10.1107/S2055699015019908.
43. Miao Du; Ya-Mei Guo; Shen-Tan Chen; Xian-He Bu; Joan Ribas; Crystal structures, spectra and magnetic properties of di-2-pyridylamine (dpa) CuII complexes [Cu(dpa)2(N3)2]·(H2O)2 and [Cu2(μ-ox)(dpa)2(CH3CN)2](ClO4)2. *Inorganica Chimica Acta* **2003**, *346*, 207-214, 10.1016/s0020-1693(02)01430-5.

44. Sujittra Youngme; Gerard A Van Albada; Narongsak Chaicha; Pimprapun Gunnasoot; Palangpon Kongsaeree; Ilpo Mutikainen; Olivier Roubeau; Jan Reedijk; Urho Turpeinen; Synthesis, spectroscopic characterization, X-ray crystal structure and magnetic properties of oxalato-bridged copper(II) dinuclear complexes with di-2-pyridylamine. *Inorganica Chimica Acta* **2003**, *353*, 119-128, 10.1016/s0020-1693(03)00207-x.

45. Oscar Castillo; Iñaki Muga; Antonio Luque; Juan M Gutierrez-Zorrilla; Jon Sertucha; Pablo Vitoria; Pascual Román; Synthesis, chemical characterization, X-ray crystal structure and magnetic properties of oxalato-bridged copper(II) binuclear complexes with 2,2'-bipyridine and diethylenetriamine as peripheral ligands. *Polyhedron* **1999**, *18*, 1235-1245, 10.1016/s0277-5387(98)00421-5.

46. Alexey N. Gusev; Radovan Herchel; Eziz Bayjyyev; Galyna A. Nyshchimenko; Grigory G. Alexandrov; I.L. Eremenko; M. Hasegawa; Ivan Nemec; Zdenek Travnicek; Wolfgang Linert; et al. Versatile coordination modes of bis[5-(2-pyridine-2-yl)-1,2,4-triazole-3-yl]alkanes in Cu(II) complexes. *Dalton Transactions* **2013**, *43*, 7153-7165, 10.1039/C4DT00462K.

47. Uttam R. Pokharel; Frank R. Fronczek; Andrew Maverick; Reduction of carbon dioxide to oxalate by a binuclear copper complex. *Nature Communications* **2014**, *5*, 5883, 10.1038/ncomms6883.

Keywords
dinuclear copper(II); ferromagnetic interaction; magnetic properties; noncovalent interaction

Retrieved from https://encyclopedia.pub/989