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The new advances in deep learning methods have influenced many aspects of scientific research, including the study of

the protein system. The prediction of proteins’ 3D structural components is now heavily dependent on machine learning

techniques that interpret how protein sequences and their homology govern the inter-residue contacts and structural

organization. Especially, methods employing deep neural networks have had a significant impact on recent CASP13 and

CASP14 competition. Here, we explore the recent applications of deep learning methods in the protein structure

prediction area. We also look at the potential opportunities for deep learning methods to identify unknown protein

structures and functions to be discovered and help guide drug–target interactions. Although significant problems still need

to be addressed, we expect these techniques in the near future to play crucial roles in protein structural bioinformatics as

well as in drug discovery.
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1. Introduction

Proteins, large and complex polymers with linear amino acid chains, play crucial roles in cells responsible for constructing

and regulating our body. By revealing the structure and contacts of biomacromolecules, we gain a better understanding of

their function, thus facilitating the rational drug discovery process. The recent advances in experimental structural biology

techniques such as X-ray crystallography, nuclear magnetic resonance (NMR), and cryogenic electron microscopy (cryo-

EM) have fueled accurate structure determination . However, owing to the high cost and time-consuming aspects

of experimental determination, there is still a large “structure knowledge gap” between the vast amount of protein

sequences and a relatively small number of known structures. Therefore, knowledge-based theoretical techniques to

elucidate protein structure are in need. After Anfinsen’s dogma stating that the native structure of at least a small globular

protein is determined by the sequence only, various attempts to identify protein structure from its sequence have been

made, starting with predicting folding states of protein by Pauling and Corey in 1951 . The significant breakthrough

in next-generation sequencing (NGS) technology has led to burgeoning sequence information, and a fundamental

problem in structural bioinformatics is predicting 3D structures using these tremendous sequence data .

Protein structure prediction has become more powerful and accurate with method developments from traditional statistical

methods to machine learning (ML) and deep learning (DL) methods . Artificial neural network, especially deep

neural network, is a good fit for protein structure prediction with its ability to express a wide variety of functions and its

efficiency relying heavily on the amount of quality data. The introduced concepts of homology and evolutionary information

empowered the process, and the advent of robust equipment such as graphical processing unit (GPU) expedited it 

. Initially, some pieces of protein structures such as helical status or torsional angles are targeted for prediction, and

then the whole structure is deduced utilizing the predicted features known as protein structure annotations (PSAs) .

In order to catch up with recent progress and to know the state-of-the-art method, one can check with Critical Assessment

of Structure Prediction (CASP), a worldwide community experiment held every two years to assess the effectiveness of

prediction methods . The usage of the artificial neural network not only saves time and cost, but also strengthens

the functional analysis of large-scale proteomics studies. ML and DL technologies based on various computational

methods enable the detection of protein–protein interaction (PPI) in heterogeneous types of proteomics data . Multi-

faceted analysis of protein structures can be linked to the prediction of drug–target interaction (DTI) . As the application

of deep learning methods to drug discovery areas is at a nascent stage, various machine and deep learning methods

need to be considered and tested for better accuracy in analyzing PPIs.

In this review, we will provide an overview of DL-associated protein structure prediction, related concepts, frequently used

DL architectures, and developed methods predicting various PSAs delineating different levels of details of protein
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structure. The further applications of DTI are of interest and discussed. Finally, current limitations, as well as the

advantages of DL-based protein structure prediction upon drug discovery field, will be highlighted.

2. Protein Sequence Homology, 3D Structure, and Deep Learning
2.1. Protein Sequence Homology

The central dogma of molecular biology states that DNA sequences are transcribed into messenger-RNA (mRNA), and

then these mRNA sequences are translated into protein sequences. Searching similar sequences can be used to reveal

“homologous” genes or proteins by detecting statistically significant similarity, which indicates common ancestry. This

protein sequence, in structural biology, is assumed to determine the three-dimensional structure and function of a protein.

It is based on the fundamental observation that similar sequences from the same evolutionary family will typically adopt

similar protein structures. Moreover, the structures of proteins are highly conservative in evolution compared with their

sequences, and the number of unique structural folds is generally thought to be limited in nature. Thus, tremendous effort

has been put into quarrying the relationship between structure and sequence of proteins. As the number of protein

sequences is exponentially increasing, while the experimentally verified structures are growing slowly, we expect

homology-based contact map prediction and modeling to become far more popular.

2.2. 3D Structural Space of Proteins

A protein structure can be defined as one of four levels: primary, secondary, tertiary, or quaternary structures. Primary

structure is a linear sequence of amino acids. There are 20 standard amino acids available to form a protein, and each

amino acid is connected to the next one via peptide bonds. Primary structure is often introduced as a string of letters, i.e.,

‘AESVL…’, as each standard amino acid has a corresponding single-letter code (and three-letter code). This already

gives much useful information with respect to protein structure in three-dimensional space owing to the distinctive

characteristics of each amino acid. For example, the different hydrophobicity of each amino acid limits the conformation of

the protein, and some unique covalent bonds can be formed only between certain amino acids such as cysteine. Many

ab-initio protein structure predictions start with this sequence of amino acids, a primary structure.

Secondary structure defines the form of local segments of proteins. It is normally determined by the hydrogen bond

patterns of polypeptide backbone or backbone dihedral angles (φ,ψ). The two common secondary structures are α-helices

and β-strands. An α-helix is a segment of amino acids where the main chain forms a helix, pointing side-chains outward.

Two hydrogen bonds per residue stabilize this helix formation. A β-strand is rather connected laterally where side chains

are pointing out perpendicularly to the plane with each successive residue facing the opposite side. This form normally

requires a partner β-strand unit for its stability. When used in protein structure prediction, secondary structure normally

falls into a three-state or a fine-grained eight-state categorization. The three-state categorization consists of two regular

types of α-helix (H) and β-strand (E), and one irregular type of coil region (C). The widely-used eight-state categorization

based on the Dictionary of Secondary Structure for Proteins (DSSP) program by Sanders further dissect helices into three

types as 3  helix (G), α-helix (H), and π-helix (I); strands into two types as β-strand (E) and β-bridge (B); and coils into

three types as β-turn (T), high curvature loop (S), and any other previously undefined type (C) .

Tertiary and quaternary structures elucidate a three-dimensional arrangement of the single and multiple proteins,

respectively. They can be represented using the Cartesian coordinates of each atom in three-dimensional space. Owing to

the aqueous nature of proteins, the main driving force deciding tertiary and quaternary structure is the hydrophobic

interaction among amino acids and water molecules. Thus, proteins tend to possess a hydrophobic core where side

chains are buried, avoiding polar water molecules. Such three-dimensional information is deducible when one has the

primary structure, secondary structure, and inter-residue CM in hand.

In contrast to sequences, which are virtually infinite in number, proteins can take on a finite number of different shapes to

carry out their functions in the cell. One can observe stronger structural conservation than sequence conservation; for

example, a strong interdependence for polar residues exists at protein core with poor solvent accessibility, but no

significant correlation is detected when looking at sequences only . This makes it feasible to predict protein structure, a

more conserved domain, from abundant sequence data . Hence, various attempts to unravel the relationship between

the structure and sequence have been made, including deep learning methodologies and pre-eminent approximations for

underlying mapping functions.

2.3. Overview of Deep Learning Methods

Deep learning is a branch of machine learning, utilizing an artificial neural network with many layers embedded, which

resembles a human nervous system. Working as universal function approximators, deep neural networks are used to
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solve various problems: classification, clustering, pattern recognition, predictive analysis, regression, and so on . With

the rapid and tremendous growth of biomedical data sources, deep learning can be applied to multi-omics data analysis,

disease categorization, and healthcare social network analysis. It indicates that high-quality data that are used to train and

build deep learning models should be appropriately labelled for biomedical data analysis. When high-quality datasets are

available for deep learning models, reproducible deep learning models can be built to analyze newly collected biomedical

data of similar structures.

Artificial neural networks consist of nodes in input, output, and hidden layers where each node is connected to nodes in

adjacent layers. These connections have distinct weights, and the inputs are processed (i.e., multiplication and

summation) at each node. Then, it undergoes the transformation based on the activation function such as sigmoid or

rectifier, and the output functions as the input for the next layer. Learning is the process of finding optimal weights that

make the neural network behave as desired. Two types of learning are present; supervised learning handles labeled

datasets for classifying or predicting purposes, while unsupervised learning handles unlabeled datasets for analyzing or

clustering the given dataset. The amount of required training data to build effective deep learning models is dependent on

the complexity and the number of features in the training data. To update and optimize the weights, back-propagation is

used to calculate the gradient of the loss function that computes the error for each training iteration . When too many

layers are used, however, the gradients either vanish or explode, making the training process inefficient . Certain tricks

such as modifications upon activation functions (i.e., rectified linear unit (ReLU)) and utilizations of skip connections (i.e.,

residual neural network) exist to overcome this issue . With these steps as a fundamental basis, there are

miscellaneous architectures for artificial neural networks. With the expanding data availability for protein sequences and

structures of closely related homologs, deep learning methods have been presented for protein structure prediction, and a

few frequently used architectures will be discussed in this section (Figure 1).

Figure 1. Overview of deep learning (DL) architectures frequently used for protein structure prediction.

The most straightforward and earliest stage example for the deep neural network is the feedforward neural network

(FFNN), sometimes called multilayer perceptron (MLP). A perceptron, a single-layer neural network, can only process

first-order information to obtain results comparable to those obtained by multiple linear regression. When multiple layers

are used, the neural networks can extract higher-order features. In FFNN, information flows in one direction from the input

layer to hidden layers, if any, until it reaches the output layer. The network has connections between each node and every

other node in the next layer.

Recurrent neural network (RNN) contains loops where the output of the layer becomes an input. This looping generates

state neurons that enable the network to possess memory about the previous state. Obtaining a future memory is

favorable for prediction and is feasible with RNN by introducing a delay, but the prediction rates drop if the delay is too

large. To overcome this issue, a bidirectional recurrent neural network (BRNN) has been developed, splitting the state

neurons into positive and negative time directions . 2D-BRNN, a two-dimensional application of BRNN, has been

widely used to correctly predict the residue contact map (CM), normally using four-state vectors handling four cardinal

corners of the map . Long-short term memory (LSTM) is a variant of unit cell used in RNN, designed to resolve

vanishing gradient problems by introducing gate functions into the unit cell . This error gating allows LSTM to learn

long-term dependencies between data points. With their ability to permit sequence as inputs and outputs, RNNs are

known for excellent performance upon any sequence-based problems, suitable for protein structure prediction with protein

sequence as input.
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Convolutional neural network (CNN) often encompasses three types of layers: convolutional, pooling, and fully connected

layers . CNN generally takes input such as a 2D image, and the convolutional layers apply various kernels to

convolve it where each kernel acts like a perceptron, generating feature maps. Then, a pooling layer follows to perform

dimension reduction upon the network parameters and feature maps. The results are forwarded into the fully connected

layers, mapping 2D feature maps into a 1D vector for further feature representations. The main benefit of applying the

convolution scheme is the massive parallelism, yielding a great amount of computational efficiency. Convolutional

schemes are widely used for CM prediction, a 2D-PSA .

Graph deep learning models enjoy attention from numerous application domains thanks to their structural consistency to

the native graph-structured data. Graph convolutional network (GCN), a generalization of the convolutional operator upon

non-Euclidian structured data, contains several spectral or spatial convolutional layers . Its unique featurization

strategies at the input level with elaborated architectures suit complicated problems such as PPI or DTI.

To improve our fundamental understanding of biological phenomena, protein structures and their contacts shed light on

their mechanism of action, possibly assisting with drug design. Based on the co-evolution analysis and deep learning

methods, protein structure prediction methods have made significant progress in recent years by using multiple sequence

alignments (MSAs) of the target protein and its homolog. A combination of the architectures mentioned above is widely

used in this type of protein structure prediction methods. One famous example would be a combination of bidirectional

RNN and CNN (BRNN–CNN) . In this scheme, a convolutional kernel maps a window of BRNN memories into a local

state. There exist variations such as bidirectional LSTM followed by CNN (BLSTM–CNN) . Unlimited hybrid topologies

are available, but one needs to design the architecture carefully, considering training difficulty, computational complexity,

and memory requirement in order to obtain the best accuracy.

3. Prediction of 1D and 2D Protein Structural Annotations

Proteins and their functions are distinguished by their structures in numerous aspects, but the rate of discovering protein

structures has been much slower than the rate of sequence identifications owing to the cost and complexity. Therefore,

protein structure predictor has become one of the most efficient and high-throughput tools in Bioinformatics to handle

flooding known sequence data with developing methodologies such as statistical, ML, and DL methods. The feature used

in the predicting process is known as PSA; it contains simplified information to ease the computing process and is used as

an intermediate step to estimate the full protein structure. One dimensional- (1D-) and two-dimensional- (2D-) PSAs have

enjoyed a great amount of attention, where secondary structure, solvent accessibility, or intrinsic disorder is mainly

described as 1D-PSA, and CM or the detailed version of CM (multi-class CM or distance map) is expressed with 2D-PSA.

Several DL applications have been developed for 1D- and 2D-PSA predictions, becoming more accurate owing to

expanding of the availability of sequence and structure data.

3.1. 1D Prediction

The most fruitful feature among 1D-PSAs is the secondary structure, the very first step for the full protein structure

prediction from the sequence. Two main classifications are available: three-state categorization into α-helix, β-strand, and

coil region, or eight fine-grained categorizations, which further segregate the previous three states (vide supra). The

earlier stage methods have used sequence data solely as input sources, but later, evolutionary information and

physicochemical properties were involved in enhancing the prediction accuracy . The accuracy can be easily

expressed by three-state percentage accuracy (Q  score) or eight-state percentage accuracy (Q  score), which is defined

as the percentage of correctly predicted secondary structure residues.

One of the earliest servers available for secondary structure prediction would be JPred developed by Cuff et al. . The

server adopts six different secondary structure prediction algorithms: DSC using linear discrimination, PHD using jury

decision neural networks, NNSSP using nearest neighbors, PREDATOR using hydrogen bonding propensities, ZPRED

using conservation number weighted prediction, and MULTIPRED using consensus single sequence method combination

. Another secondary structure prediction server, PSIPRED, became available, where the method conjugates two

FFNNs, training neural networks upon evolutionary conservation information derived from PSI-BLAST . Another

attempt called SSpro showed an enhanced algorithm application, using BRNN–CNN . The method utilizes a mixture of

estimators that leverages evolutionary information, indicated in multiple alignments, both at input and output levels of

BRNN. Porter, Porter+, and PaleAle among the Distill series are also based on ensembles of BRNN–CNN, each used to

predict different 1D-PSAs (Porter for secondary structure prediction, Porter+ for local motif prediction, and PaleAle for

residue solvent accessibility prediction) . In the following Distill methods, the sequence is processed by the first BRNN–

CNN stage and then pulled into a set of averages, which are processed by the second BRNN–CNN stage. Porter
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achieved better performance using both PSI-BLAST and HHBlits for harnessing evolutionary information . Likewise,

Porter+ considers local structural motifs for predicting torsional angles . PaleAle, dealing with relative solvent

accessibility (RSA), is structured with double BRNN–CNN stacks in the most recent version of 5.0, surpassing

benchmarks from other methods for RSA prediction . NetSurfP-2.0, concatenating CNNs and BRNNs, was developed

in 2019. This method predicts secondary structures, solvent accessibility, torsion angles, and intrinsic disorder, all at once

.

Taking other 1D-PSAs into account along with secondary structure and considering physicochemical properties, as well as

evolutionary information, helped to enhance the overall accuracy. DESTRUCT, proposed by Wood and Hirst, iteratively

used cascade-correlation neural networks upon both secondary structure and torsional angles . The iteration is

composed of the first FFNN trained to predict the secondary structure and φ dihedral, and filtering FFNN intervening

successively to transform the predictions into new values. Hirst group upgraded DESTRUCT into DISSPred that relied on

support vector machine (SVM) and obtained better performance . SPINE-X by Faraggi et al. in 2012, later replaced by

SPOT-1D from the same group, enhanced the accuracy by incorporating physicochemical properties such as

hydrophobicity, polarizability, and isoelectric point, among others. This method could also be used for residue solvent

accessibility and torsion angle predictions . SPIDER2 launched anticipated multiple 1D-PSAs—secondary structure,

solvent accessible surface area (SASA), and torsion angles—all at once with three iterations of deep neural networks .

Its successor, SPIDER3, improved the performance overall, and now the method predicts four PSAs at once, including

contact number with four iterations for the prediction . ProteinUnet, published in 2020, yields similar accuracy for

secondary structure prediction as SPIDER3-single, but uses half parameters with an 11-fold faster training time .

Most servers and methods discussed now have over 84% Q  score in their latest versions with deeper neural networks

and better algorithms. Considering the explosive advancement in reliability for Q  score with DL methods, it might not take

too long until the theoretical limit of 88–90% is attained.

One special kind of 1D-PSA targets disordered regions of proteins. Many proteins contain intrinsically disordered regions

(IDRs) that are highly flexible. Having multiple structures available, IDRs are involved in assembling, signaling, and many

genetic diseases . Therefore, this PSA is of particular interest in addition to being a component of full protein structure

prediction. IDRs have been predicted using statistical potentials, SVM, or artificial neural networks. IUPred employs a

statistical pairwise potential expressed as a 20 × 20 matrix that expresses the general preferences of each amino acid

pair in contact . The pairwise energy profile is calculated, and disorder probability is estimated accordingly.

DISOPRED3 method is formulated on SVM, a supervised machine learning model, to discriminate between ordered and

disordered regions . DISOPRED3 is trained on PSI-BLAST profile because it outperforms the models trained on single

sequences, showing the improvements predicated on evolutionary information. SPOT-Disorder2 offers per-residue

disorder prediction based on a deep neural network utilizing LSTM cells . Higher accuracy was obtained by upgrading

its architecture from a single LSTM topology used in the previous version, SPOT-Disorder, to an ensemble set of hybrid

models consisting of residual CNNs with inception paths followed by LSTM layers .

3.2. 2D Prediction

With the information gained from 1D-PSAs in hand, one might need 2D-PSAs to fully construct the three-dimensional

protein structure. Recent endeavors for 2D-PSAs are focused on CM and multi-class CM, both expressing the closeness

between residue pairs in a protein. CM takes a binary 2D matrix structure of N × N, where N is the length of the protein

sequence, assessing each residue pair as 1 (presence) or 0 (absence) for matrix elements based on the user-defined

threshold Euclidean distance (a typical value is ~8 Å between Cα atoms). Multi-class CM is expressed in a 2D matrix, but

the matrix elements are quantized in detail, categorized into more than two states. The importance of this CM for protein

structure prediction is directly shown in estimations; an early study estimated that one could assemble a structure model

within 5 Å RMSD from the native structure if N/4 long-range protein contacts are known, and another study estimated that

one contact per twelve residues allows for robust and accurate protein fold modeling .

The CM itself definitely provides useful information on the given protein’s spatial organization, but one should note that

CMs often contain transitive noise coming from “indirect” correlations between residues. Methods for direct correlation

analysis are used to remove this noise such as mutual information (MI), direct coupling analysis (DCA), and protein

sparse inverse covariance estimation (PSICOV) . DCA infers direct co- “evolutionary couplings” among residue

pairs in an MSA table to uncover native intra-domain and inter-domain residue–residue contacts in protein families .

Many groups have developed CM predictors utilizing multi-stage deep neural networks. The previously introduced Distill

server also provides the CM predictor named XX-Stout . The developers included contact density profile as an

intermediate step using another Distill module named BrownAle . Calculating this contact density profile, principal

eigenvector significantly increased the performance overall. DNCON by Eickholt and Cheng took advantage of surging
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GPU developments for training largely boosted ensembles of residue–residue contact predictors . MetaPSICOV is

another CM predictor known for the first method utilizing co-evolution signals from 1D-PSAs extracted with three different

algorithms . Then, a two-layer neural network was used to deduce CM. Its successive versions, named MetaPSICOV2

and DeepMetaPSICOV, exist where deeper network architecture and ReLU units are employed. RaptorX-Contact from

RaptorX series utilized co-evolution signals to improve the accuracy . RaptorX-Contact predicts local structure

properties, contact and distance matrix, inter-residue orientation, and tertiary structure of a protein using an ultra-deep

convolutional residual neural network from primary sequence or a multiple sequence alignment. DNCON2 is implemented

with six CNNs and applied co-evolution signal from 1D PSAs. This method predicts CM with various distance thresholds

of 6, 7.5, 8, 8.5, and 10 Å, and then refines them to leave with only 8 Å CM with an improved prediction rate .

TripletRes starts with the collection of MSAs through whole-genome and metagenome sequence databases and then

constructs three complimentary co-evolutionary feature matrices (covariance matrix, precision matrix, and

pseudolikelihood maximization) to create contact-map models through deep residual convolutional neural network training

. DeepContact is also a CNN-based approach that discovers co-evolutionary motifs and leverages these patterns to

enable accurate inference of contact probabilities . The authors argue that the program is useful, particularly when few

related sequences are available. DeepCov uses fully convolutional neural networks operating on amino-acid pair

frequency or covariance data derived directly from sequence alignments, without using global statistical methods such as

sparse inverse covariance or pseudolikelihood estimation . In contrast to other software programs that require third-

party programs, Pconsc4 is a hassle-free contact prediction tool that does not use any external programs .

Recently, in 2019, DeepCDPred was developed, which includes a multi-class CM predictor exploiting distance constraint

terms . The authors used four FFNN-based models to distinguish four classes of contact ranges: 0–8, 8–13, 13–18,

and 18–23 Å. AlphaFold from the same year generates the most fine-grained multi-class CM, 64 equal bins distogram

(distance histogram) along 2–22 Å, becoming state-of-the-art for the field . An architecture of deep 2D dilated

convolutional residual network with 220 residual blocks was employed for the distance map prediction in AlphaFold (note

that it will be discussed in more detail in the next section). These 2D-PSA developments have benefitted from the growth

of affiliated fields, including algorithmic development and advancement of technologies, which is immediately beneficial for

precise 3D structure prediction.
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