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The new advances in deep learning methods have influenced many aspects of scientific research, including the

study of the protein system. The prediction of proteins’ 3D structural components is now heavily dependent on

machine learning techniques that interpret how protein sequences and their homology govern the inter-residue

contacts and structural organization. Especially, methods employing deep neural networks have had a significant

impact on recent CASP13 and CASP14 competition. Here, we explore the recent applications of deep learning

methods in the protein structure prediction area. We also look at the potential opportunities for deep learning

methods to identify unknown protein structures and functions to be discovered and help guide drug–target

interactions. Although significant problems still need to be addressed, we expect these techniques in the near

future to play crucial roles in protein structural bioinformatics as well as in drug discovery.

structural bioinformatics  deep learning  protein sequence homology  3D structure of proteins

drug discovery

1. Introduction

Proteins, large and complex polymers with linear amino acid chains, play crucial roles in cells responsible for

constructing and regulating our body. By revealing the structure and contacts of biomacromolecules, we gain a

better understanding of their function, thus facilitating the rational drug discovery process. The recent advances in

experimental structural biology techniques such as X-ray crystallography, nuclear magnetic resonance (NMR), and

cryogenic electron microscopy (cryo-EM) have fueled accurate structure determination . However, owing to

the high cost and time-consuming aspects of experimental determination, there is still a large “structure knowledge

gap” between the vast amount of protein sequences and a relatively small number of known structures. Therefore,

knowledge-based theoretical techniques to elucidate protein structure are in need. After Anfinsen’s dogma stating

that the native structure of at least a small globular protein is determined by the sequence only, various attempts to

identify protein structure from its sequence have been made, starting with predicting folding states of protein by

Pauling and Corey in 1951 . The significant breakthrough in next-generation sequencing (NGS) technology

has led to burgeoning sequence information, and a fundamental problem in structural bioinformatics is predicting

3D structures using these tremendous sequence data .

Protein structure prediction has become more powerful and accurate with method developments from traditional

statistical methods to machine learning (ML) and deep learning (DL) methods . Artificial neural network,

especially deep neural network, is a good fit for protein structure prediction with its ability to express a wide variety
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of functions and its efficiency relying heavily on the amount of quality data. The introduced concepts of homology

and evolutionary information empowered the process, and the advent of robust equipment such as graphical

processing unit (GPU) expedited it . Initially, some pieces of protein structures such as helical status or

torsional angles are targeted for prediction, and then the whole structure is deduced utilizing the predicted features

known as protein structure annotations (PSAs) . In order to catch up with recent progress and to know the

state-of-the-art method, one can check with Critical Assessment of Structure Prediction (CASP), a worldwide

community experiment held every two years to assess the effectiveness of prediction methods . The usage

of the artificial neural network not only saves time and cost, but also strengthens the functional analysis of large-

scale proteomics studies. ML and DL technologies based on various computational methods enable the detection

of protein–protein interaction (PPI) in heterogeneous types of proteomics data . Multi-faceted analysis of protein

structures can be linked to the prediction of drug–target interaction (DTI) . As the application of deep learning

methods to drug discovery areas is at a nascent stage, various machine and deep learning methods need to be

considered and tested for better accuracy in analyzing PPIs.

In this review, we will provide an overview of DL-associated protein structure prediction, related concepts,

frequently used DL architectures, and developed methods predicting various PSAs delineating different levels of

details of protein structure. The further applications of DTI are of interest and discussed. Finally, current limitations,

as well as the advantages of DL-based protein structure prediction upon drug discovery field, will be highlighted.

2. Protein Sequence Homology, 3D Structure, and Deep
Learning

2.1. Protein Sequence Homology

The central dogma of molecular biology states that DNA sequences are transcribed into messenger-RNA (mRNA),

and then these mRNA sequences are translated into protein sequences. Searching similar sequences can be used

to reveal “homologous” genes or proteins by detecting statistically significant similarity, which indicates common

ancestry. This protein sequence, in structural biology, is assumed to determine the three-dimensional structure and

function of a protein. It is based on the fundamental observation that similar sequences from the same evolutionary

family will typically adopt similar protein structures. Moreover, the structures of proteins are highly conservative in

evolution compared with their sequences, and the number of unique structural folds is generally thought to be

limited in nature. Thus, tremendous effort has been put into quarrying the relationship between structure and

sequence of proteins. As the number of protein sequences is exponentially increasing, while the experimentally

verified structures are growing slowly, we expect homology-based contact map prediction and modeling to become

far more popular.

2.2. 3D Structural Space of Proteins

A protein structure can be defined as one of four levels: primary, secondary, tertiary, or quaternary structures.

Primary structure is a linear sequence of amino acids. There are 20 standard amino acids available to form a
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protein, and each amino acid is connected to the next one via peptide bonds. Primary structure is often introduced

as a string of letters, i.e., ‘AESVL…’, as each standard amino acid has a corresponding single-letter code (and

three-letter code). This already gives much useful information with respect to protein structure in three-dimensional

space owing to the distinctive characteristics of each amino acid. For example, the different hydrophobicity of each

amino acid limits the conformation of the protein, and some unique covalent bonds can be formed only between

certain amino acids such as cysteine. Many ab-initio protein structure predictions start with this sequence of amino

acids, a primary structure.

Secondary structure defines the form of local segments of proteins. It is normally determined by the hydrogen bond

patterns of polypeptide backbone or backbone dihedral angles (φ,ψ). The two common secondary structures are α-

helices and β-strands. An α-helix is a segment of amino acids where the main chain forms a helix, pointing side-

chains outward. Two hydrogen bonds per residue stabilize this helix formation. A β-strand is rather connected

laterally where side chains are pointing out perpendicularly to the plane with each successive residue facing the

opposite side. This form normally requires a partner β-strand unit for its stability. When used in protein structure

prediction, secondary structure normally falls into a three-state or a fine-grained eight-state categorization. The

three-state categorization consists of two regular types of α-helix (H) and β-strand (E), and one irregular type of coil

region (C). The widely-used eight-state categorization based on the Dictionary of Secondary Structure for Proteins

(DSSP) program by Sanders further dissect helices into three types as 3  helix (G), α-helix (H), and π-helix (I);

strands into two types as β-strand (E) and β-bridge (B); and coils into three types as β-turn (T), high curvature loop

(S), and any other previously undefined type (C) .

Tertiary and quaternary structures elucidate a three-dimensional arrangement of the single and multiple proteins,

respectively. They can be represented using the Cartesian coordinates of each atom in three-dimensional space.

Owing to the aqueous nature of proteins, the main driving force deciding tertiary and quaternary structure is the

hydrophobic interaction among amino acids and water molecules. Thus, proteins tend to possess a hydrophobic

core where side chains are buried, avoiding polar water molecules. Such three-dimensional information is

deducible when one has the primary structure, secondary structure, and inter-residue CM in hand.

In contrast to sequences, which are virtually infinite in number, proteins can take on a finite number of different

shapes to carry out their functions in the cell. One can observe stronger structural conservation than sequence

conservation; for example, a strong interdependence for polar residues exists at protein core with poor solvent

accessibility, but no significant correlation is detected when looking at sequences only . This makes it feasible to

predict protein structure, a more conserved domain, from abundant sequence data . Hence, various attempts to

unravel the relationship between the structure and sequence have been made, including deep learning

methodologies and pre-eminent approximations for underlying mapping functions.

2.3. Overview of Deep Learning Methods

Deep learning is a branch of machine learning, utilizing an artificial neural network with many layers embedded,

which resembles a human nervous system. Working as universal function approximators, deep neural networks

are used to solve various problems: classification, clustering, pattern recognition, predictive analysis, regression,
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and so on . With the rapid and tremendous growth of biomedical data sources, deep learning can be applied to

multi-omics data analysis, disease categorization, and healthcare social network analysis. It indicates that high-

quality data that are used to train and build deep learning models should be appropriately labelled for biomedical

data analysis. When high-quality datasets are available for deep learning models, reproducible deep learning

models can be built to analyze newly collected biomedical data of similar structures.

Artificial neural networks consist of nodes in input, output, and hidden layers where each node is connected to

nodes in adjacent layers. These connections have distinct weights, and the inputs are processed (i.e.,

multiplication and summation) at each node. Then, it undergoes the transformation based on the activation function

such as sigmoid or rectifier, and the output functions as the input for the next layer. Learning is the process of

finding optimal weights that make the neural network behave as desired. Two types of learning are present;

supervised learning handles labeled datasets for classifying or predicting purposes, while unsupervised learning

handles unlabeled datasets for analyzing or clustering the given dataset. The amount of required training data to

build effective deep learning models is dependent on the complexity and the number of features in the training

data. To update and optimize the weights, back-propagation is used to calculate the gradient of the loss function

that computes the error for each training iteration . When too many layers are used, however, the gradients

either vanish or explode, making the training process inefficient . Certain tricks such as modifications upon

activation functions (i.e., rectified linear unit (ReLU)) and utilizations of skip connections (i.e., residual neural

network) exist to overcome this issue . With these steps as a fundamental basis, there are miscellaneous

architectures for artificial neural networks. With the expanding data availability for protein sequences and structures

of closely related homologs, deep learning methods have been presented for protein structure prediction, and a

few frequently used architectures will be discussed in this section (Figure 1).

Figure 1. Overview of deep learning (DL) architectures frequently used for protein structure prediction.
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The most straightforward and earliest stage example for the deep neural network is the feedforward neural network

(FFNN), sometimes called multilayer perceptron (MLP). A perceptron, a single-layer neural network, can only

process first-order information to obtain results comparable to those obtained by multiple linear regression. When

multiple layers are used, the neural networks can extract higher-order features. In FFNN, information flows in one

direction from the input layer to hidden layers, if any, until it reaches the output layer. The network has connections

between each node and every other node in the next layer.

Recurrent neural network (RNN) contains loops where the output of the layer becomes an input. This looping

generates state neurons that enable the network to possess memory about the previous state. Obtaining a future

memory is favorable for prediction and is feasible with RNN by introducing a delay, but the prediction rates drop if

the delay is too large. To overcome this issue, a bidirectional recurrent neural network (BRNN) has been

developed, splitting the state neurons into positive and negative time directions . 2D-BRNN, a two-

dimensional application of BRNN, has been widely used to correctly predict the residue contact map (CM),

normally using four-state vectors handling four cardinal corners of the map . Long-short term memory (LSTM) is

a variant of unit cell used in RNN, designed to resolve vanishing gradient problems by introducing gate functions

into the unit cell . This error gating allows LSTM to learn long-term dependencies between data points. With their

ability to permit sequence as inputs and outputs, RNNs are known for excellent performance upon any sequence-

based problems, suitable for protein structure prediction with protein sequence as input.

Convolutional neural network (CNN) often encompasses three types of layers: convolutional, pooling, and fully

connected layers . CNN generally takes input such as a 2D image, and the convolutional layers apply various

kernels to convolve it where each kernel acts like a perceptron, generating feature maps. Then, a pooling layer

follows to perform dimension reduction upon the network parameters and feature maps. The results are forwarded

into the fully connected layers, mapping 2D feature maps into a 1D vector for further feature representations. The

main benefit of applying the convolution scheme is the massive parallelism, yielding a great amount of

computational efficiency. Convolutional schemes are widely used for CM prediction, a 2D-PSA .

Graph deep learning models enjoy attention from numerous application domains thanks to their structural

consistency to the native graph-structured data. Graph convolutional network (GCN), a generalization of the

convolutional operator upon non-Euclidian structured data, contains several spectral or spatial convolutional layers

. Its unique featurization strategies at the input level with elaborated architectures suit complicated problems

such as PPI or DTI.

To improve our fundamental understanding of biological phenomena, protein structures and their contacts shed

light on their mechanism of action, possibly assisting with drug design. Based on the co-evolution analysis and

deep learning methods, protein structure prediction methods have made significant progress in recent years by

using multiple sequence alignments (MSAs) of the target protein and its homolog. A combination of the

architectures mentioned above is widely used in this type of protein structure prediction methods. One famous

example would be a combination of bidirectional RNN and CNN (BRNN–CNN) . In this scheme, a convolutional

kernel maps a window of BRNN memories into a local state. There exist variations such as bidirectional LSTM
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followed by CNN (BLSTM–CNN) . Unlimited hybrid topologies are available, but one needs to design the

architecture carefully, considering training difficulty, computational complexity, and memory requirement in order to

obtain the best accuracy.

3. Prediction of 1D and 2D Protein Structural Annotations

Proteins and their functions are distinguished by their structures in numerous aspects, but the rate of discovering

protein structures has been much slower than the rate of sequence identifications owing to the cost and complexity.

Therefore, protein structure predictor has become one of the most efficient and high-throughput tools in

Bioinformatics to handle flooding known sequence data with developing methodologies such as statistical, ML, and

DL methods. The feature used in the predicting process is known as PSA; it contains simplified information to ease

the computing process and is used as an intermediate step to estimate the full protein structure. One dimensional-

(1D-) and two-dimensional- (2D-) PSAs have enjoyed a great amount of attention, where secondary structure,

solvent accessibility, or intrinsic disorder is mainly described as 1D-PSA, and CM or the detailed version of CM

(multi-class CM or distance map) is expressed with 2D-PSA. Several DL applications have been developed for 1D-

and 2D-PSA predictions, becoming more accurate owing to expanding of the availability of sequence and structure

data.

3.1. 1D Prediction

The most fruitful feature among 1D-PSAs is the secondary structure, the very first step for the full protein structure

prediction from the sequence. Two main classifications are available: three-state categorization into α-helix, β-

strand, and coil region, or eight fine-grained categorizations, which further segregate the previous three states

(vide supra). The earlier stage methods have used sequence data solely as input sources, but later, evolutionary

information and physicochemical properties were involved in enhancing the prediction accuracy . The accuracy

can be easily expressed by three-state percentage accuracy (Q   score) or eight-state percentage accuracy

(Q  score), which is defined as the percentage of correctly predicted secondary structure residues.

One of the earliest servers available for secondary structure prediction would be JPred developed by Cuff et al. .

The server adopts six different secondary structure prediction algorithms: DSC using linear discrimination, PHD

using jury decision neural networks, NNSSP using nearest neighbors, PREDATOR using hydrogen bonding

propensities, ZPRED using conservation number weighted prediction, and MULTIPRED using consensus single

sequence method combination . Another secondary structure prediction server, PSIPRED, became available,

where the method conjugates two FFNNs, training neural networks upon evolutionary conservation information

derived from PSI-BLAST . Another attempt called SSpro showed an enhanced algorithm application, using

BRNN–CNN . The method utilizes a mixture of estimators that leverages evolutionary information, indicated in

multiple alignments, both at input and output levels of BRNN. Porter, Porter+, and PaleAle among the Distill series

are also based on ensembles of BRNN–CNN, each used to predict different 1D-PSAs (Porter for secondary

structure prediction, Porter+ for local motif prediction, and PaleAle for residue solvent accessibility prediction) .

In the following Distill methods, the sequence is processed by the first BRNN–CNN stage and then pulled into a set
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of averages, which are processed by the second BRNN–CNN stage. Porter achieved better performance using

both PSI-BLAST and HHBlits for harnessing evolutionary information . Likewise, Porter+ considers local

structural motifs for predicting torsional angles . PaleAle, dealing with relative solvent accessibility (RSA), is

structured with double BRNN–CNN stacks in the most recent version of 5.0, surpassing benchmarks from other

methods for RSA prediction . NetSurfP-2.0, concatenating CNNs and BRNNs, was developed in 2019. This

method predicts secondary structures, solvent accessibility, torsion angles, and intrinsic disorder, all at once .

Taking other 1D-PSAs into account along with secondary structure and considering physicochemical properties, as

well as evolutionary information, helped to enhance the overall accuracy. DESTRUCT, proposed by Wood and

Hirst, iteratively used cascade-correlation neural networks upon both secondary structure and torsional angles .

The iteration is composed of the first FFNN trained to predict the secondary structure and φ dihedral, and filtering

FFNN intervening successively to transform the predictions into new values. Hirst group upgraded DESTRUCT into

DISSPred that relied on support vector machine (SVM) and obtained better performance . SPINE-X by Faraggi

et al. in 2012, later replaced by SPOT-1D from the same group, enhanced the accuracy by incorporating

physicochemical properties such as hydrophobicity, polarizability, and isoelectric point, among others. This method

could also be used for residue solvent accessibility and torsion angle predictions . SPIDER2 launched

anticipated multiple 1D-PSAs—secondary structure, solvent accessible surface area (SASA), and torsion angles—

all at once with three iterations of deep neural networks . Its successor, SPIDER3, improved the performance

overall, and now the method predicts four PSAs at once, including contact number with four iterations for the

prediction . ProteinUnet, published in 2020, yields similar accuracy for secondary structure prediction as

SPIDER3-single, but uses half parameters with an 11-fold faster training time . Most servers and methods

discussed now have over 84% Q  score in their latest versions with deeper neural networks and better algorithms.

Considering the explosive advancement in reliability for Q  score with DL methods, it might not take too long until

the theoretical limit of 88–90% is attained.

One special kind of 1D-PSA targets disordered regions of proteins. Many proteins contain intrinsically disordered

regions (IDRs) that are highly flexible. Having multiple structures available, IDRs are involved in assembling,

signaling, and many genetic diseases . Therefore, this PSA is of particular interest in addition to being a

component of full protein structure prediction. IDRs have been predicted using statistical potentials, SVM, or

artificial neural networks. IUPred employs a statistical pairwise potential expressed as a 20 × 20 matrix that

expresses the general preferences of each amino acid pair in contact . The pairwise energy profile is calculated,

and disorder probability is estimated accordingly. DISOPRED3 method is formulated on SVM, a supervised

machine learning model, to discriminate between ordered and disordered regions . DISOPRED3 is trained on

PSI-BLAST profile because it outperforms the models trained on single sequences, showing the improvements

predicated on evolutionary information. SPOT-Disorder2 offers per-residue disorder prediction based on a deep

neural network utilizing LSTM cells . Higher accuracy was obtained by upgrading its architecture from a single

LSTM topology used in the previous version, SPOT-Disorder, to an ensemble set of hybrid models consisting of

residual CNNs with inception paths followed by LSTM layers .

3.2. 2D Prediction
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With the information gained from 1D-PSAs in hand, one might need 2D-PSAs to fully construct the three-

dimensional protein structure. Recent endeavors for 2D-PSAs are focused on CM and multi-class CM, both

expressing the closeness between residue pairs in a protein. CM takes a binary 2D matrix structure of N × N,

where N is the length of the protein sequence, assessing each residue pair as 1 (presence) or 0 (absence) for

matrix elements based on the user-defined threshold Euclidean distance (a typical value is ~8 Å between Cα

atoms). Multi-class CM is expressed in a 2D matrix, but the matrix elements are quantized in detail, categorized

into more than two states. The importance of this CM for protein structure prediction is directly shown in

estimations; an early study estimated that one could assemble a structure model within 5 Å RMSD from the native

structure if N/4 long-range protein contacts are known, and another study estimated that one contact per twelve

residues allows for robust and accurate protein fold modeling .

The CM itself definitely provides useful information on the given protein’s spatial organization, but one should note

that CMs often contain transitive noise coming from “indirect” correlations between residues. Methods for direct

correlation analysis are used to remove this noise such as mutual information (MI), direct coupling analysis (DCA),

and protein sparse inverse covariance estimation (PSICOV) . DCA infers direct co- “evolutionary

couplings” among residue pairs in an MSA table to uncover native intra-domain and inter-domain residue–residue

contacts in protein families .

Many groups have developed CM predictors utilizing multi-stage deep neural networks. The previously introduced

Distill server also provides the CM predictor named XX-Stout . The developers included contact density profile

as an intermediate step using another Distill module named BrownAle . Calculating this contact density profile,

principal eigenvector significantly increased the performance overall. DNCON by Eickholt and Cheng took

advantage of surging GPU developments for training largely boosted ensembles of residue–residue contact

predictors . MetaPSICOV is another CM predictor known for the first method utilizing co-evolution signals from

1D-PSAs extracted with three different algorithms . Then, a two-layer neural network was used to deduce CM.

Its successive versions, named MetaPSICOV2 and DeepMetaPSICOV, exist where deeper network architecture

and ReLU units are employed. RaptorX-Contact from RaptorX series utilized co-evolution signals to improve the

accuracy . RaptorX-Contact predicts local structure properties, contact and distance matrix, inter-residue

orientation, and tertiary structure of a protein using an ultra-deep convolutional residual neural network from

primary sequence or a multiple sequence alignment. DNCON2 is implemented with six CNNs and applied co-

evolution signal from 1D PSAs. This method predicts CM with various distance thresholds of 6, 7.5, 8, 8.5, and 10

Å, and then refines them to leave with only 8 Å CM with an improved prediction rate . TripletRes starts with the

collection of MSAs through whole-genome and metagenome sequence databases and then constructs three

complimentary co-evolutionary feature matrices (covariance matrix, precision matrix, and pseudolikelihood

maximization) to create contact-map models through deep residual convolutional neural network training .

DeepContact is also a CNN-based approach that discovers co-evolutionary motifs and leverages these patterns to

enable accurate inference of contact probabilities . The authors argue that the program is useful, particularly

when few related sequences are available. DeepCov uses fully convolutional neural networks operating on amino-

acid pair frequency or covariance data derived directly from sequence alignments, without using global statistical

methods such as sparse inverse covariance or pseudolikelihood estimation . In contrast to other software
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programs that require third-party programs, Pconsc4 is a hassle-free contact prediction tool that does not use any

external programs .

Recently, in 2019, DeepCDPred was developed, which includes a multi-class CM predictor exploiting distance

constraint terms . The authors used four FFNN-based models to distinguish four classes of contact ranges: 0–8,

8–13, 13–18, and 18–23 Å. AlphaFold from the same year generates the most fine-grained multi-class CM, 64

equal bins distogram (distance histogram) along 2–22 Å, becoming state-of-the-art for the field . An architecture

of deep 2D dilated convolutional residual network with 220 residual blocks was employed for the distance map

prediction in AlphaFold (note that it will be discussed in more detail in the next section). These 2D-PSA

developments have benefitted from the growth of affiliated fields, including algorithmic development and

advancement of technologies, which is immediately beneficial for precise 3D structure prediction.
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