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Otoferlin, an essential synaptic protein in the auditory sensory inner hair cells, is encoded by the gene OTOF. Biallelic

variants in OTOF are associated with autosomal recessive auditory neuropathy or synaptopathy (DFNB9). Since its

discovery in 1996, roughly 220 causally-associated variants have been uncovered. The prevalence of OTOF-associated

hearing loss varies according to population. A higher molecular genetic diagnostic yield has been reported in patients with

prelingual auditory synaptopathy, making this very specific clinical feature a useful criterion for OTOF diagnostic testing.

Apart from this clinical hallmark, genotype-phenotype correlations are rather complex and include a variant that causes

temperature-sensitive auditory neuropathy (p.Ile515Thr) and three variants that have so far been associated with

progressive hearing impairment. Several founder variants have been reported in the Asian and European populations. A

complete landscape of genomic variation at the DFNB9 locus remains to be determined and improvements in genomics

technologies may eventually uncover novel insights into possible missing variants. A complete understanding of OTOF
variants is essential for the success of current and future therapies.
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1. Introduction

Sensorineural hearing loss is one of the most common sensory deficits in humans, affecting one to two per 1000

newborns in developed countries . Over the past 25 years since the discovery of the first deafness gene, more than 120

genes have been causally associated with non-syndromic hearing loss (https://hereditaryhearingloss.org/) and over 6000

disease-causing variants have been identified . As most variants implicated in hearing loss are small insertions/deletions

(indels) or single nucleotide variants , high-throughput sequencing is a well-suited method to rapidly allow for a deeper

understanding of the spectrum of variants involved in deafness and their consequences on the auditory phenotype.

Using a candidate gene approach, the DFNB9 locus (OMIM: 601071) was mapped to chromosome 2p23.1 in 1996 by

studying a genetically isolated family from Lebanon . Three years later, the gene OTOF (OMIM: 603681), encoding a

transmembrane (TM) protein called otoferlin, was mapped to the DFNB9 locus and identified as causing prelingual

autosomal recessive, non-syndromic deafness . Biallelic pathogenic variants in OTOF cause auditory synaptopathy due

to deficient pre-synaptic neurotransmitter release at the ribbon synapse of the inner hair cells (IHCs) . Since its initial

identification, about 220 pathogenic and likely pathogenic variants in OTOF have

been identified.

2. Molecular Epidemiology of OTOF-Associated Hearing Loss

2.1. Summary of Variants Identified in Otoferlin

By virtue of being one of the first deafness genes identified, OTOF has been tested in molecular genetic diagnostic
settings for over two decades, allowing an estimate of the global burden of OTOF-associated hearing loss. There

are presently 219 genetic changes that are classified as pathogenic or likely pathogenic according to the literature or

clinical database entries (Leiden Open Variation Database v3.0 (LOVD v3), the Deafness Variation Database (DVD),

ClinVar, and the Human Gene Mutation Database (HGMD)). This includes 84 missense, 44 frameshift, 43 nonsense, 36

splice site, 7 in-frame duplications or deletions, 3 copy number variations, as well as 1 stop loss and regulatory variant

each (Figures 1 and 2).
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Figure 1. Overview of OTOF variants that are classified as pathogenic/likely pathogenic in the databases ClinVar, Leiden

Open Variation Database v3.0 (LOVD v3), the Deafness Variation Database (DVD) or Human Gene Mutation Database

(HGMD). Variants in the upper part of the figure are non-truncating, variants below are truncating. Black text indicates

homozygous variants, blue and green text represents compound heterozygous and heterozygous variants, respectively.

Orange text show variants that are reported in databases without a publication reference with undetermined zygosity.

Purple text indicates two different variants on the cDNA level that cause the same protein-level change. Variants are

annotated according to NM_001287489.1, encoding NP_001274418.1, or isoform e.

Figure 2. Overview of OTOF splice variants according to ClinVar, Leiden Open Variation Database v3.0 (LOVD v3), the

Deafness Variation Database (DVD) or the Human Gene Mutation Database (HGMD). Black text indicates homozygous

variants, blue and green text represents compound heterozygous and heterozygous variants, respectively. Orange text

shows variants that are reported in databases without a publication reference with undetermined zygosity. Variants are

annotated according to NM_001287489.1, encoding NP_001274418.1, or isoform e.

2.2. Population-Based Diagnostic Rates of Otoferlin

The prevalence of OTOF-associated hearing loss varies according to population background. For example, OTOF
variants account for approximately 5% of genetic diagnoses in the Turkish population , and 3.1% of diagnoses in the

Pakistani population [32]. A common founder variant (p.Gln829*) was identified in 3% of Spanish cohorts . In other

populations, OTOF has been identified as a cause of hearing impairment in 3.1% of Taiwanese , 2.4% (primarily)

European-American , 2–3% of Pakistani , 1.9% of French  and 1.7% of Japanese  patients who were not

pre-selected on the basis of auditory neuropathy/synaptopathy. In Iranian patients, a study that included 38

consanguineous patients identified only one family with a homozygous frameshift variant (c.1981dupG, p.Asp661Glyfs*2)

and suggested OTOF is not a major contributor to hearing loss in the Iranian population .

2.3. Diagnostic Rates of Otoferlin in Patients with Auditory Neuropathy/Synaptopathy

Auditory synaptopathy with prelingual onset has been identified in patients with genetic aberrations in a small subset of

genes (PJVK, OPA1, and DIAPH3 (AUNA1 locus)), and a limited number of suspected cases in a few other genes such

as GJB2 , although the GJB2 cases are controversially discussed . The unique phenotypic

presentation of DFNB9 makes a targeted selection for OTOF screening in patients for genetic testing rather successful.

As exemplified by a study that included Japanese patients with auditory neuropathy/synaptopathy, biallelic OTOF variants
were uncovered in 56% of cases that included the identification of a founder variant (p.Arg1939Gln) . The
p.Gln829* founder variant was identified in 87% of patients diagnosed with auditory neuropathy/synaptopathy in
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the Spanish population . Another founder variant (p.Glu1700Gln) in Taiwanese patients with progressive, moderate-to-

profound hearing loss was identified that diagnosed 23% of a selected patient cohort of 22 individuals with auditory

neuropathy/synaptopathy . A study that screened the OTOF gene in 37 Chinese patients with congenital auditory

neuropathy/synaptopathy had a diagnostic yield of 41.2% . On the contrary, a study that involved the screening of 73

Chinese Han patients with auditory neuropathy/synaptopathy resolved only 5.5% of patients and uncovered a

temperature-sensitive variant, which was lower than anticipated and demonstrates a high diagnostic variability .

2.4. Missing Variants

The diagnostic yield of patients with audiological hallmarks of DFNB9 suggests multifaceted deficits in general isoform

and variant knowledge, as well as possible technical limitations. Beyond the possibility of additional genes harboring

causally associated variants that evoke the same clinical features, there are several reasons explaining why patients with

auditory synaptopathy due to biallelic variants in OTOF remain undiagnosed after molecular genetic screening. Such

reasons include possible limitations stemming from methodology (e.g., sequencing coverage gaps), missed copy number

variations that either fall below the detection resolution of commonly used microarrays in genetic diagnostics or missed

due to uneven high-throughput sequencing coverage, especially in the case of exome sequencing, or deep intronic

variants that are not captured in targeted enrichment approaches. Furthermore, variant interpretation bottlenecks that

could also be due to incorrect transcript usage in variant annotation, current limitations in knowledge about the

pathogenicity of rare variants and lack of opportunity for segregation testing in families that can complicate outcomes for

definitive statements about variant pathogenicity. Another hypothesis points to variants occurring in currently unannotated

exons.

Sequence analysis is primarily focused on exonic regions and relies on the complete understanding of gene isoform

structure (i.e., exon annotation). The cochlea is encased in one of the hardest bones of the body, making it one of the

least accessible tissues for transcriptome studies. However, many microarray and RNA-seq-based studies using the

human and rodent whole cochlea have ensued since the early 2000s . Though challenging, single-cell isolation of

the inner ear and long read single-cell RNA-seq have recently been performed in mice at several developmental time

points  to reveal cell-type defining genes and pathways. Long-read sequencing and isoform analysis has identified

unappreciated splicing heterogeneity and expression of cell-specific isoforms with unannotated exons . A recent study

marked a crucial gap in this understanding in many well-studied genes, such as Otof, by mapping a novel non-coding

exon 6b and suggesting an in-frame exon 10b (Figure 3). Extending this finding by annotating novel OTOF exons in

humans could yield significant implications for undiagnosed patients who would otherwise fit the characteristic DFNB9

phenotypic spectrum.

Figure 3. Overview of the Otof transcript structure based on single-cell RNA-seq data from mouse IHCs. (a) Transcript

structure of Otof, with exon 1 on the right side of the figure. Exons are depicted as gold bars. Ensembl transcripts Otof-
201 (upper isoform, encoding 1997 amino acids) and Otof-202 (lower isoform, encoding 1992 amino acids) are shown. (b)

The read depth of each exon is shown in green, with the highest covered regions showing regions in red. Note that

maximum read peaks (red) correspond with exons shown in (a) if they are expressed in the IHC. (c) Mammalian

conservation track for Otof. Conserved sequences are shown in blue and those not conserved are shown in red. The

predicted novel exons 6b and 10b are marked with black boxes. This figure was generated by querying morlscrnaseq.org

using the “Transcript Structure Browser” tool .
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