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Presently, smartphones are used more and more for purposes that have nothing to do with phone calls or simple data

transfers. One example is the recognition of human activity, which is relevant information for many applications in the

domains of medical diagnosis, elderly assistance, indoor localization, and navigation. The information captured by the

inertial sensors of the phone (accelerometer, gyroscope, and magnetometer) can be analyzed to determine the activity

performed by the person who is carrying the device, in particular in the activity of walking. Nevertheless, the development

of a standalone application able to detect the walking activity starting only from the data provided by these inertial sensors

is a complex task. This complexity lies in the hardware disparity, noise on data, and mostly the many movements that the

smartphone can experience and which have nothing to do with the physical displacement of the owner. In this work, we

explore and compare several approaches for identifying the walking activity. We categorize them into two main groups:

the first one uses features extracted from the inertial data, whereas the second one analyzes the characteristic shape of

the time series made up of the sensors readings. Due to the lack of public datasets of inertial data from smartphones for

the recognition of human activity under no constraints, we collected data from 77 different people who were not connected

to this research. Using this dataset, which we published online, we performed an extensive experimental validation and

comparison of our proposals.
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1. Introduction

Our society is more and more surrounded by devices—smartphones, tablets, wearables, “things” from the Internet of

Things (IoT), etc.—which are rapidly transforming us, changing the way we live and interact with each other. The gradual

incorporation of new sensors on these devices provides significant opportunities towards the development of applications

that use these sensors in an ever-increasing number of domains: healthcare, sport, education, leisure, social interaction,

etc. Thus, inertial sensors are being used in the smartphones to monitor human activity and, in particular, the action of

walking. The information about whether the user is walking or not is very valuable for many applications, such as medicine

(detection of certain pathologies) [ ], biometric identification (recognition of the owner of the device based on his or her

characteristic gait) [ ], elderly assistance [ ], emergency services [ ], monitoring systems [ ] and pedestrian

indoor localization [ ].

In the particular case of pedestrian indoor localization, recognizing the activity of walking using inertial sensors is

essential, since other alternatives such as the Global Navigation Satellite System (GNSS) do not work indoors. Although

other sensor modalities, such as infrared, ultrasound, magnetic field, WiFi or BlueTooth [ ], have been used to

detect the displacement of a person indoors, the combination of the information provided by these sensors together with

the recognition of walking using the accelerometer, magnetometer and gyroscope (IMU) has been proved to be the best

option to significantly increase the performance of indoor localization.

2. Influence and application

Other sensors and processing strategies were applied to identify the activity of walking, such as cameras for visual

odometry or pressure sensors attached to the shoes [9]. These approaches involve additional hardware attached to the

body (foot, arm, trunk, etc. [ ]), so that their processing is simpler and the outcome more reliable. However, the

placement of sensors on the body or clothing greatly restricts their applicability. Instead, using the inertial sensors that the

vast majority of smartphones already have (accelerometer, gyroscope and magnetometer) is much more attractive, since

they present fewer restrictions and most people already carry this kind of devices.

One of the biggest advantages of using the inertial sensors of the smartphone for walking recognition is that very little

physical infrastructure is required for these kind systems to function. Nevertheless, achieving a robust recognition system

for this task is more complex than it might seem. It is relatively easy to detect the walking activity and even count the
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number of steps given when people walks ideally carrying the device in the palm of his/her hand, facing upwards and

without moving it. However, the situation becomes more complicated in real life, since the orientation of the smartphone

with respect to the user, as well as its placement (hand, pocket, ear, bag, etc.), can constantly change as the person

moves [ ]. Getting a robust classification regardless of the device carrying mode and its orientation is challenging. This

kind of devices experience a large variety of motions producing different patterns in the signal. Frequently, we obtain

similar patterns for movements or actions that have nothing to do with walking, which makes the recognition of this activity

a complex task. Figure 1 shows the complexity of this problem with a real example. In this figure we can see the norm of

the acceleration experienced by a mobile phone while its owner is doing two different activities. The person and the device

are the same in both cases. In Figure 1a, we can see the signal obtained when the person is walking with the mobile in

the pocket. The impacts of the feet touching the floor are reflected in the signal as local maximum points. Please note that

identifying and counting these peaks, for example applying a simple peak-valley algorithm [ ], would easily allow

counting the number of steps. Figure 1b shows the acceleration experienced by the mobile when the user is standing still

with the mobile in his hand, without walking, but gesticulating with the arms in a natural way. Unfortunately, in this case,

the peaks of the signal do not correspond to steps, so the aforementioned peak-valley algorithm would detect false

positives.

Figure 1. Norm of the acceleration experienced by a mobile phone when its owner is walking (a), and not walking, but

gesticulating with the mobile in his/her hand (b).

In this work, we carried out an exhaustive analysis and development of different methodologies to solve the problem of

walking recognition in mobile devices. We made an extensive review of the state of the art and we explored and

compared several approaches based on different machine learning techniques that allow a robust detection of the walking

activity in mobile phones. We categorize these approaches into two main groups: (1) feature-based classification and (2)

shape-based classification.
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