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Friedreich’s ataxia (FRDA, MIM 229300) is an autosomal recessive neurodegenerative disease and it is the most

prevalent hereditary ataxia in the Caucasian population, with a prevalence of around 2–4 in 100,000 individuals. 

FRDA is classically characterized by progressive gait ataxia, dysarthria, dysphagia, oculomotor dysfunction, loss of deep

tendon reflexes, signs of pyramidal tract involvement, scoliosis, visual loss, and poor hearing, and in some cases,

cardiomyopathy, diabetes mellitus.

FRDA is caused by an unstable GAA expansion located in intron 1 of the FXN gene (9q21.11) that encodes for frataxin

(Fxn). The function of Fxn is not completely known, but the most widely accepted theory is that it plays a role in the

biogenesis of iron-sulfur clusters required for the correct function of several proteins.
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1. Introduction

This rare childhood-onset disease is characterized by progressive spinocerebellar neurodegeneration, peripheral sensory

neuropathy, vestibular and cerebellar pathology, and pyramidal disabilities in the last stages. All these disease-related

alterations cause symptoms of gait and limb ataxia, lower limb areflexia and dysarthria in these patients . Other non-

neurological features of FRDA are scoliosis, diabetes and cardiac complications , which are the main cause of death

in these patients, mostly in early adulthood. Most FRDA patients are homozygous for the GAA·TTC triplet repeat

expansion in the FXN gene localized in chromosome 9q21.11 producing decreased protein levels of the protein product

frataxin (FXN) . Regarding the molecular characteristics of FRDA, there are well known alterations consisting of

mitochondrial respiratory chain dysfunction , accumulation of mitochondrial iron , decreased mitochondrial DNA levels

and adenosine triphosphate (ATP) generation, increased oxidative stress and unbalanced antioxidant response , as well

as alterations in calcium homeostasis  and lipid metabolism .

Enzymatic antioxidant systems include superoxide dismutase Copper-Zinc superoxide dismutase (CuZnSOD) and

Manganese superoxide dismutase (MnSOD), catalase, glutathione peroxidases, peroxiredoxins, and the TRX and GLRX

systems, among others. Superoxide dismutase and catalase have previously been described as being altered in FRDA

[64,65] and we have also found a deficiency in the expression of cytosolic CuZnSOD and mitochondrial MnSOD  [60],

which is in agreement with previous studies demonstrating that the up-regulation of MnSOD fails to occur in FRDA

fibroblasts when they are exposed to iron . However, despite the critical importance of the thioredoxin superfamily for

cellular metabolism described above, there is little information on the specific role of TRX and GLRX systems in FRDA,

and, therefore, we consider it to be of special relevance to elucidate their function in the molecular physiopathology of the

disease.

The principal function of frataxin is still unknown; however, the involvement of the FXN protein in iron-sulphur clusters (Fe-

S clusters), heme group biosynthesis , and mitochondriogenesis  has been reported, although only the role of the

FXN protein in Fe-S cluster biogenesis seems to be more convincing and extensively proved . The generation of iron-

sulphur clusters and their insertion in apoproteins is a complex process that involves many players located in

mitochondria and cytosol and divided into three sequential steps. In the first step, the [2Fe-2S] cluster is assembled on the

scaffold protein iron-sulfur cluster assembly protein (ISCU2) from inorganic iron and sulfur. During this step, it has been

proposed that frataxin interacts with ISCU2 and five other additional ISC proteins that form the ISC assembly complex.

Furthermore, in the first studies, it was suggested that the FXN protein donated iron to the cluster [2Fe-2S] .

Posterior experiments proposed frataxin as an allosteric regulator for sulfur transfer to the Fe-S cluster , although

currently the main mechanism accepted is a preloading of ISCU2 with iron . Dysregulation of FXN protein function in

ISC assembly can produce several alterations in cells, including those produced by deficits in Fe-S cluster-containing

mitochondrial enzymes, such as aconitase and succinate dehydrogenase. In fact, low levels of aconitase, an enzyme from
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the tricarboxylic acid cycle (TCA cycle), and mitochondrial respiratory complexes I, II, and III have been determined in

frataxin-deficient animal and cellular models . These alterations lead to metabolic changes that decrease ATP

generation in the mitochondrion. In addition, studies on FRDA patients  and cellular  and animal models  showed

mitochondrial dysfunction and lower ATP levels. Another important enzyme that contains a Fe-S cluster is ferrochelatase

(FECH), which catalyzes the last step of heme group biosynthesis, where the iron atom is incorporated into protoporphyrin

IX. Previously, an iron atom should be provided to FECH through a process that is not yet known. The involvement of FXN

in this process has been reported by in vitro analysis and one study in yeast that showed an FXN protein interaction with

ferrochelatase . Nevertheless, the role of frataxin in heme group biosynthesis is controversial and the last suggested

model of mitochondrial heme metabolism did not include this protein . These results are in agreement with a recent

analysis in erythroid progenitor cells from FRDA patients, in which heme synthesis was not altered during erythroid

differentiation .

Iron homeostasis and iron-sulfur cluster biosynthesis are closely related processes. Indeed, impaired FeS-dependent

activities and an activation of IRP1 (iron regulatory protein 1) have been described in the liver of frataxin-deficient mice,

increasing iron import and availability by promoting gene expression of the iron-response element (IRE) containing

promoter genes . Iron accumulation in the spleen, liver, and heart has been described in FRDA patients  and animal

models , thus suggesting altered iron metabolism in FRDA. However, controversial studies about iron accumulation

in neural tissues can be found in the literature . The implication of iron accumulation in the physiopathology of

FRDA is not yet clarified, and further analyses are needed to address this issue, especially regarding neural degeneration

in FRDA. However, the newly described process of ferroptosis has provided a possible mechanism for neuronal death,

since it explains many of the pathological characteristics of neuronal degeneration in FRDA. Ferroptosis is a regulated cell

death that is distinct from other cell death processes, such as apoptosis, classical autophagy, and necrosis. Ferroptosis is

characterized by an overwhelming, iron-dependent accumulation of lethal lipid hydroperoxides . It has been suggested

that the initiation of ferroptosis might be directly triggered by an increase in free iron levels, for example by a dysregulation

of ferritinophagy, a selective autophagy of ferritin . Iron increase or accumulation induces the Fenton reaction which

promotes the production of ROS, and together with the lipoxygenase activity of 15-LOX (ALOX15), oxidizes

polyunsaturated fatty acids phospholipids (PUFA-PLs) which activate the ferroptosis pathway . In addition, inhibition

of glutathione peroxidase enzyme 4 (GPX4)  or GSH unavailability or defects in its restoration  produce lipid

hydroperoxide accumulation that triggers ferroptosis. Importantly, the implication of TRX1 and TRXRD in ferroptosis has

also been described . Increased ROS, lower reduced GSH concentrations and enhanced sensitivity to oxidants

compared with control neurons have also been observed in these FRDA cell models . Part of ROS production occurs

in the mitochondria as a consequence of the malfunction of respiratory complex I . Importantly, through the

mitochondrial one-carbon metabolism, NADPH production is severely compromised when the function of Complex I is

affected , as occurs in blood cells from FRDA patients . The compromised levels of NADPH may affect cellular

thiol-based redox regulation because the classical thioredoxin system is composed of TRX, TRXRD and NADPH, which

are required as electron donors for TRXRD  and glutathione reductase to replenish GSH levels, which are used by

glutaredoxins  and GPX4 to reduce lipoperoxides .

In relation to this, FRDA neurons have shown higher lipoperoxide levels, increased ROS, lower reduced GSH

concentration, and enhanced sensitivity to oxidants compared with control neurons . Neurons from a YG8R mouse

model also showed a mitochondrial energy imbalance, as a consequence of an inhibition of mitochondrial Complex I and

increased lipid peroxidation, which contribute to cell death . Furthermore, patients with FRDA present a disturbance of

GSH homeostasis , lipoperoxidation and thiol oxidation . Together with iron accumulation, all these results

suggest the occurrence of ferroptosis in FRDA.

2. Activation of the Thioredoxin family by NRF2 Activators as Therapeutic
Options in FRDA

As shown above, it is well established that oxidative stress plays a key role in the pathophysiology of FRDA both by

means of unbalanced antioxidant enzymatic and non-enzymatic responses. Therefore, for many years, antioxidants have

been evaluated as potential therapeutic agents for FRDA, and some authors have recently reviewed potential therapies

based on antioxidant strategies . Among the different therapies evaluated, overexpression of NRF2 seems to be a

promising approach to promote antioxidant response in FRDA, and hence, several trials using omaveloxolone or

resveratrol in order to overexpress NRF2 and stimulate ARE activation have been proposed .

Targeted therapies to stimulate the expression of TRX have a wide array of beneficial effects in neurodegenerative

disorders and other hyperinflammatory diseases in which the expression or function of these proteins are altered.

Preclinical and clinical studies using recombinant TRX (rhTRX) are currently underway, although there are also natural
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substances (including active principles from plants) which can induce the expression of thioredoxin family proteins .

Yodoi et al. reviewed the most promising strategies to deliver TRX as a therapeutic agent, including (i) topical application,

(ii) oral delivery, and (iii) TRX-overexpression using exogenous stimuli . Topical applications may have little relevance

for neurological diseases, but oral delivery and TRX-overexpression can be considered feasible therapeutic strategies in

neurodegenerative disorders such as FRDA. Nevertheless, it is more plausible to use an indirect strategy to induce TRX

superfamily overexpression. Thus, as described in the previous section, it would be possible to activate TRX by

upregulating the stability, expression, and activation of NRF2. In this regard, a recent review by La Rosa, Bertini and

Piemonte described the pharmacological interventions aimed at restoring the NRF2 signaling network in FRDA . Among

the several molecules described to stimulate NRF2 overexpression, resveratrol was found to increase both NRF2 stability

and mRNA overexpression of NRF2  and, in turn, TRX1 .

Resveratrol has been proposed as a potential antioxidant treatment in FRDA and as an inducer of frataxin expression. In

FRDA mouse models and cells from FRDA patients (i.e., fibroblasts and lymphoblasts), resveratrol treatment

demonstrated an ability to increase the transcription of a stably transfected frataxin-green fluorescent protein . However,

these results were not reproduced in peripheral blood mononuclear cells obtained from FRDA patients  nor in induced

pluripotent stem cell (hPSC)-derived neurons from patients with FRDA . Moreover, an open-label trial using low-dose (1

g daily) and high-dose resveratrol (5 g daily) in FRDA patients, despite suggesting clinical benefits for high-dose

resveratrol, did not demonstrate an increase in frataxin levels in FRDA patients . Interestingly, in a model of ischemia-

reperfusion of liver, trans-resveratrol demonstrated the ability to maintain TRX redox activity by diminishing TXNIP protein

expression and, more importantly, the ability to inhibit the secretion of the TRX1 protein . The same results were

observed in an in vivo model of old mice with or without 3-month resveratrol treatment . These results suggest that the

expression of TRX can ameliorate the symptoms of FRDA probably by improving some of the mechanisms we have

described in the previous section, despite not increasing the expression of frataxin levels.

Compared with resveratrol, sulforaphane (SFN) more potently activates NRF2 to induce the expression of the antioxidant

system  [175]. SFN is an isothiocyanate derived from glucoraphanin, which is mainly found in cruciferous vegetables

such as broccoli, Brussels sprouts, cabbages and cauliflower. Its potential to increase the expression and activity of NRF2

and TRX1 has been demonstrated by ARE transcription activation in murine retina . Interestingly, Jazwa et al. showed

that intra-peritoneal injection of SFN can cross the blood–brain barrier in the MPTP mouse model of Parkinson’s disease,

being detected in the brain 15 min after injection . Besides its potential to increase the expression of NRF2 and TRX1 in

some cellular models such as retinal cells  and human hepatoma cells , SFN also demonstrated its ability to increase

the expression of TRXRD, and together with selenium helps to increase the activity of TRXRD . The reactivation of

TRXRD may serve to re-establish the pool of reduced TRX and maintain antioxidant homeostasis in cells, which, in turn,

may contribute to the release of NRF2 from KEAP1 , thereby activating the transcriptional function of NRF2. It is

noteworthy that Chiang et al. also found that SFN can increase the expression of both NRF2 and its inhibitor KEAP1 in a

SK-N-MC neuroblastoma cell line, which could be explained as a feedback mechanism to prevent NRF2 overexpression

and its downstream antioxidant defense genes .

When SFN treatment was evaluated in frataxin-silenced motor neuron-like cells , neural stem cells isolated from the

KIKO FRDA mouse model  and also in FRDA fibroblasts , this antioxidant was able to revert the cellular phenotypic

defects, providing neuroprotection in the neuronal models. Unfortunately, despite these findings, SFN has not yet been

evaluated in clinical trials for FRDA.

Omaveloxolone is another inductor of NRF2 expression able to reverse the FRDA phenotype in different pre-clinical

models. Omaveloxolone protects the cells against oxidative stress, avoids lipid peroxidation, decreases the mitochondrial

ROS generation, and increments reduced glutathione levels . Recently, results from a clinical trial with this drug have

been published pointing out that omaveloxolone significantly improves neurological function and is generally safe and well

tolerated .

Finally, melatonin has been defined as a principal regulator of Nrf2 signaling and improves oxidative stress state

(reviewed in ). Moreover, melatonin has been described as an endoplasmic reticulum stress mediator, promoting TRX1

activity by inhibiting the TXINP/NLRP3 pathway . Despite the fact that melatonin has been described as a possible

treatment in other neurodegenerative diseases , in FRDA, only one case report has been described. In this case, the

authors of the study administrate 5 and 10 mg of melatonin to an FRDA patient to treat REM (rapid eye movement phase

of sleep) Sleep Behavior Disorder; however, they did not find any benefit after melatonin treatment .

The activation of thioredoxin superfamily proteins through NRF2 activators (such as omaveloxolone, resveratrol,

sulforaphane and melatonin) can represent promising therapeutic options in FRDA, and, as such, they have been or are

already being subject of pre-clinical and clinical trials (Table 1). The reason is that the activation of NRF2 and in turn TRXs
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and GRXs may contribute to decreased oxidative stress in FRDA cells, to improve the metabolism of iron-sulfur clusters

required for appropriate mitochondrial metabolism, to decrease iron-catalyzed mitochondrial damage and also to inhibit

ferroptosis, all of them related with the molecular pathogenesis in FRDA. We consider that further efforts exploring

therapeutic candidates overexpressing NRF2 and thioredoxin family proteins may increase the therapeutic strategies for

this neuromuscular disease.

Table 1. Pre-clinical and clinical antioxidant therapies in FRDA.

Compound

Pre-Clinical Studies in FRDA Clinical Trials in FRDA

Model
Doses/

Treatment
Ref. Nº Subjects

Doses/

Treatment
Ref.

Resveratrol

YG8R mouse

200 mg/kg daily

for 3 days.

Subcutaneous

injection.

27 FRDA

patients: 13

low dosis and

14 high dosis

0.5 g or 2.5 g

twice daily for

12 weeks.

Capsules.

Human

fibroblast

MSC

iPSC-derived

neurons

25 µM to 125 µM

once

25 µM to 125 µM

once

10 µM to 50 µM

once

40 patients

(estimated)

2 g daily for

24 weeks.

Capsules.

ClinicalTrials.gov

Id: NCT03933163

Sulforaphane

(SFN)

Mouse

NSC34

motor

neurons

Human

fibroblasts

5 µM for 24 h

10 µM for 24 h
     

Neural stem

cells KIKO

mouse

5 µM for 2, 6,

and 24 h
     

Human

fibroblast

10 µM for 2, 6,

and 24 h
     

Omaveloxolone

Cerebellar

Granule

Neurons

KIKO and

YG8R mice

Human

Fibroblast

50 nM for 24 h

50 nM for 24 h
103 patients

150 mg daily

for 48 weeks.

Capsules.

Melatonin      
Case report: 1

FRDA patient

5 mg and 10

mg
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