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Sperm cryopreservation is a powerful tool to preserve threatened animal species or for livestock breeding. However, this

process is not free of disadvantages. Thus, during the cryopreservation process a significant amount of sperm suffers

considerable cryodamage, which may affect sperm quality and fertility. Recently, the use of different “omics” technologies

in sperm cryobiology, especially proteomics studies, has led to a better understanding of the molecular modifications

induced by sperm cryopreservation, facilitating the identification of different freezability biomarkers and certain proteins

that can be added before cryopreservation to enhance sperm cryosurvival. This entry provides an updated overview of the

molecular mechanism involved in sperm cryodamage, as well as the molecular aspects of those novel strategies that

have been developed to reduce sperm cryodamage, including  including new cryoprotectants, antioxidants, proteins,

nanoparticles and vitrification.
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1. Molecular Damaged Caused by the Freezing-Thawing Process

Sperm cryopreservation has been reported to induce an increase in plasma membrane fluidity–permeability,

overproduction of reactive oxygen species (ROS), reduction of acrosome integrity, impairment of mitochondrial membrane

potential and lower sperm motility in bull , buffalo , buck , ram  and red deer .

Molecular studies during sperm cryopreservation offer the possibility of recognizing those specific elements (proteins,

lipids, ions, carbohydrates, etc.) altered by the freezing–thawing process that are in part responsible for the structural and

functional changes observed in cryopreserved sperm (Figure 1).

In this sense, understanding the molecular modifications inflicted by the freezing–thawing process is essential to diminish

or prevent cryodamage. Owing to the reduced , if not seemingly absent,  transcriptional and translational activity in

mature sperm, proteomics studies represent the best option for investigating the molecular mechanisms regulating sperm

functionality . Moreover, it is also important to study the impact of cryopreservation on sperm RNAs transcripts since

some of them are delivered to the oocyte participating in fertilization and embryo development, while others are involved

in capacitation, motility, metabolism and other relevant sperm functions .

 

Figure 1. Main consequences of sperm cryodamage in ruminants. During the cryopreservation process, ruminant sperm

suffer several structural and functional damages, which are probably the result of different molecular changes. This figure

summarizes those structural, functional and molecular changes produced during the freezing–thawing procedure.
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One of the first structures affected by the cryopreservation is the sperm plasma membrane . During the freezing some

sperm surface proteins as well as membrane proteins are lost or translocated with the consequent loss of their function.

For example, proteins involved in capacitation, sperm–oocyte interaction and gamete fusion, such as TCP1,

LOC101123268, RPN1, P25b, HEXB, CSNK1G2, ICA, LOC101123216, ADAM2 and TIMP-2, decreased in abundance in

ram, gazelle and bull sperm after cryopreservation , while another protein associated with fertilization, HSP70,

was lost in buffalo sperm . Other proteins involved in transport, membrane stabilization and protection against lipid

peroxidation or cold-shock, such as GLUT, CLU, BSP5, BSP1, aSFP, HSPA4L, TRAP1, GPX4 and GPX5 also decreased

in abundance in these species along with antiapoptotic and decapacitating proteins (CSNK2A2 and Spermadhesin Z13)

.

Cryopreservation also induces significant changes in the distribution or abundance of those proteins that act as ROS

scavengers. Relevant antioxidant enzymes such as glutathione peroxidase (GPx), glutathione reductase (GR) and

superoxide dismutase (SOD) were redistributed on ram sperm surface following cryopreservation . These findings,

together with the reduced antioxidant activity of SOD and reduced glutathione (GSH) observed in bull and ram sperm after

cryopreservation, could explain in part the increased susceptibility of frozen–thawed sperm to suffer lipid peroxidation and

oxidative damage .

Disturbances in the sperm antioxidant system during cryopreservation and the activation of L-Amino acid oxidase in dead

or defective cryopreserved sperm significantly contribute to the increased ROS production detected in ruminant sperm

after freezing–thawing, the sperm plasma membrane being the primary site where ROS-induced damage is manifested

(Figure 2) . Excessive generation of ROS during cryopreservation leads to major protein, lipid and carbohydrate

changes in the sperm membrane due to the reduction of disulfide bonds between membrane proteins , peroxidation of

membrane phospholipids and modifications of the sperm glycocalyx .

 

Figure 2. Plasma membrane damage during sperm cryopreservation and its relationship with oxidative stress. A

reorganization of sperm membrane phospholipids takes places during freezing–thawing, altering lipid–protein, lipid–

carbohydrate and protein–carbohydrate interactions which are necessary for proper membrane activity. Excessive

production of reactive oxygen species (ROS) leads to major protein, lipid and carbohydrate changes in the sperm

membrane due to the reduction of disulfide bonds between membrane proteins, peroxidation of membrane phospholipids

and modifications of the sperm glycocalyx. As a result, the sperm membrane becomes fragile and its semipermeable

property is lost. Overproduction of ROS during sperm cryopreservation may also cause DNA damage and impair several

axonemal and mitochondrial proteins, which negatively affect mitochondrial activity and axonemal integrity, resulting in the

loss of sperm motility.

Besides sperm membrane damage, oxidative stress disrupts mitochondrial activity with the consequent loss of sperm

motility . In ruminants, two main metabolic pathways, oxidative phosphorylation and glycolysis, produce the energy

required to maintain sperm motility in the form of ATP . Comparative proteomics studies between fresh and

cryopreserved sperm revealed that freezing–thawing procedures alter the abundance of several enzymes implicated in

oxidative phosphorylation and glycolysis in ram, bull and gazelle sperm . Among them, different ATP synthases,

COX5B, AK1, NDUFV2, ODPB2, ACO2 and NDPK7 were some of those proteins related to oxidative phosphorylation,

while different hexokinases, GPI, ALDOA, GAPDH5, PGK2, PGAM2, PKM2 and TPI were some of those proteins related

to glycolysis.
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Sperm with damaged DNA can complete the fertilization process; however, embryo development can be seriously

interrupted or altered once the embryo genome is activated at the 4- or 8-cell stage due to the transcription of damaged

paternal genes . Moreover, several coding and non-coding RNAs, nuclear proteins and other epigenetics marks from

sperm are delivered to the offspring together with the paternal genome . In consequence, aside from DNA damage,

changes in the relative abundance of RNAs, aberrant DNA methylation, abnormal histone modifications or improper

chromatin compaction in sperm due to alterations in the nucleoprotein structure could have a severe impact on fertilization

or embryogenesis . While the effect of freezing–thawing on sperm DNA stability has been widely investigated, few

studies in ruminants explored the influence of freezing–thawing on sperm epigenome. Messenger RNA (mRNA) carries

the genetic code to translate proteins, but there are other RNAs termed non-coding RNAs (ncRNAs) that do not code for

proteins. Both types of RNAs (mRNA and ncRNAs) have been found to modulate a variety of biological functions in

sperm . In addition, some ncRNAs are also involved in epigenetic regulation . In consequence, variations in RNA

transcripts during cryopreservation could adversely affect sperm integrity, functionality and its fertilizing potential or make

the sperm vulnerable to epigenetic errors. Chen et al.  reported that cryopreservation modified in bull sperm the relative

abundance of four ncRNAs involved in embryo development. Moreover, in horses, sperm cryopreservation increased

global DNA methylation , whereas in boar sperm, freezing–thawing decreased the relative abundance of mRNAs as

well as the protein levels of some genes associated with DNA methylation (DNMT3A, DNMT3B), histone modifications

(JHDM2A, KAT8) and genomic imprinting (IGF2) .

2. Molecular Aspects of those Novel Strategies to Reduce Sperm
Cryodamage

Currently, there is a wide variety of extenders that can be used during sperm cryopreservation in different ruminant

species (reviewed by ); however, not all of them offer the same protection against sperm cryodamage.

Extenders usually contain various components (buffers, antibiotics, sugars, fatty acids, cryoprotectants, antioxidants and

other substances) to efficiently protect sperm viability and fertility during cryopreservation .

Cryoprotectants protect sperm from ice crystal formation, osmotic and chemical stress. Such components can be

classified into permeating and non-permeating, and both types of cryoprotectants are usually included in the extenders.

Glycerol is the permeating cryoprotectant most commonly used in ruminants during sperm cryopreservation, while egg

yolk is the non-permeating cryoprotectant. The former is cytotoxic beyond certain concentration and has been shown to

alter in bull sperm some proteins associated with sperm–oocyte binding (IZUMO4), energy metabolism (PDB1, NUDFV2,

NDPK7), cytoskeleton organization (CAPZB, ODF2) and ROS metabolism (SOD2), which may negatively affect sperm

function . Recently, a novel cryoprotective agent, carboxylated poly-L-lysine, has been used to reduce glycerol

concentration in the freezing medium, enhancing in vivo fertility of cryopreserved buffalo and bull sperm . Regarding

non-permeating cryoprotectants, it has been reported that egg yolk also alters the proteome of ram sperm before

cryopreservation . Therefore, special attention should be payed to sperm-cryoprotectant interactions since these

interactions may affect sperm cryopreservation outcomes. Additional studies should be conducted to elucidate whether

glycerol and egg yolk exert the same impact on the sperm proteome of other ruminant species.

Another strategy for protecting sperm against cryodamage is the increment of the cholesterol membrane content prior to

cryopreservation by adding cholesterol-loaded cyclodextrins (CLC) to the freezing medium. This treatment improves

sperm membrane stability after incorporating exogenous cholesterol to the plasma membrane, which in turn enhances

sperm cryosurvival, motility, mitochondrial activity and the number of sperm attached to zona pellucida, reducing at the

same time cryo-capacitation and premature tyrosine phosphorylation . The beneficial effects of CLC seem to be

greater in those ejaculates with low freezability, at least in ram sperm . Moreover, the addition of CLC to the extender

attenuated in gazelle sperm the degradation of three proteins related to energy metabolism and cytoskeletal organization

(CAPZB, HSP90A, PAGM2) during the freezing–thawing process compared to untreated sperm, which may explain the

increased motility observed in CLC treated sperm .

Supplementation of the freezing medium with antioxidants reduces the negative effects generated by the excessive ROS

production during cryopreservation, which improves sperm cryosurvival. Antioxidants can be classified into enzymatic and

non-enzymatic, and both types can be added to the freezing medium, yielding different results . The former includes

superoxide dismutase (SOD), glutathione reductase (GR), glutathione peroxidase (GPx) and catalase (CAT), while the

latter includes reduced glutathione (GSH), vitamins, plant extracts (e.g., cinnamtannin B-1), minerals, amino acids,

proteins and other exogenous compounds (e.g., resveratrol or quercetin) with antioxidant properties .

Recent studies investigated the addition of different nanoparticles to the freezing medium to overcome the main

drawbacks that conventional antioxidants could present, like the low durability to harsh conditions .

Nanotechnology advances have contributed to the design of novel nano-compounds that possess antioxidant properties,
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such as selenium, zinc oxide and apoferritin containing gold-silver nanoparticles. Addition of selenium nanoparticles to

semen extender enhanced viability, motility and chromatin integrity of cryopreserved bull sperm, obtaining greater in vivo

fertility results . Similar results were reported in cryopreserved ram sperm when selenium particles were added to the

freezing medium .

Melatonin is another potential candidate to include in the freezing medium due to its protective effect against oxidative

stress, which is dose-dependent . The beneficial effects of melatonin on sperm cryopreservation rely on its powerful

antioxidant property and its ability to stimulate the enzymatic activity of SOD, GPx and CAT . Moreover, addition of

melatonin to the freezing medium prevents a prolonged opening of MPTP during cryopreservation, which in turn increases

ATP production, improving post-thaw sperm motility .

Proteomics studies on seminal plasma have greatly contributed to identifying those proteins with beneficial effects on

sperm cryopreservation, facilitating the generation of recombinant proteins as a promising strategy for sperm

cryopreservation. Recently, supplementation of the extender with recombinant seminal plasma proteins such as

regucalcin (RGN), a recombinant peptide containing four FNII domains (TrxA-FNIIx4-His ) and serine protease inhibitor

kazal-type 3 (SPINK3) have been shown to exert a cryoprotective effect on sperm .

Antifreeze proteins and glycoproteins are other cryoprotective elements that deserve special attention. These proteins,

which are produced by some insects, Antarctic fishes, crustaceans, bacteria, fungi and microalgae, have the capacity to

protect sperm membrane from cryodamage by preventing ice crystal formation . Addition of antifreeze protein and

glycoprotein type I to semen extender significantly increased post-thaw motility in ram sperm , whereas in bull,

supplementation with antifreeze protein type I only improved the osmotic resistance of sperm during cryopreservation .

3. Future Directions

Cryopreservation alters a variety of proteins and ARNs transcripts involved in relevant sperm functions, such as sperm

motility, capacitation, fertilization and embryo development. Understanding the molecular damages caused by the

freezing–thawing process is fundamental to protect these molecular elements and prevent or reduce those changes in

sperm structure or function that negatively affect the reproductive performance. Moreover, supplementation of the freezing

medium with novel cryoprotectants, antioxidants and other new components such as proteins or nanoparticles requires a

further optimization to be an effective alternative to the commercial extenders currently used for cryopreservation of

ruminant sperm.

Abbreviations

TCP1 T-complex protein 1 subunit alpha

LOC101123268 Dolichyl-diphosphooligosaccharide-protein glycosyltransferase

RPN1 Dolichyl-diphosphooligosaccharide-protein glycosyltransferase subunit 1

HEXB Beta-hexosaminidase subunit beta-like isoform X1

CSNK1G2 Casein kinase I isoform gamma-2 isoform X2

ICA Inhibitor of carbonic anhydrase-like isoform X3

LOC101123216 Disintegrin and metalloproteinase domain-containing protein 20

ADAM2 Fertilin beta

TIMP-2 Tissue inhibitor of metalloproteinases 2

HSP70 Heat shock 70 kDa protein
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GLUT Glucose transporter

CLU Clusterin

BSP5 Binder of sperm protein 5

BSP1 Binder of sperm protein 1

aSFP Acidic seminal fluid protein

HSP4AL Heat shock 70 kDa protein 4 L isoform C1

TRAP1 Heat shock protein 75 kDa, mitochondrial isoform X3

GPX4 Phospholipid hydroperoxide glutathione peroxidase

GPX5 Epididymal secretory glutathione peroxidase

CSNK2A2 Casein kinase II subunit alpha

SOD2 Superoxide dismutase 2

COX5B Cytochrome c oxidase subunit 5B, mitochondrial

AK1 Adenylate kinase isoenzyme 1

NUDFV2 NADH dehydrogenase flavoprotein 2

ODPB2 Pyruvate dehydrogenase E1 component subunit beta, mitochondrial isoform 2

ACO2 Aconitate hydratase, mitochondrial

NDPK7 Nucleoside diphosphate kinase 7

GPI Glucose-6-phosphate isomerase

ALDOA Fructose-bisphosphate aldolase

GAPDH5 Glyceraldehyde-3-phosphate dehydrogenase, testis-specific

PGK2 Phosphoglycerate kinase 2

PGAM2 Phosphoglycerate mutase 2

PKM2 Pyruvate kinase M2

TPI Triosephosphate isomerase



HSP90 Heat shock 90 kDa protein

DNMT3A DNA (cytosine-5-)-methyltransferase 3 alpha

DNMT3B DNA (cytosine-5-)-methyltransferase 3 beta

JHDM2A JmjC domain-containing histone demethylation protein 2A

KAT8 K(lysine) acetyltransferase 8

IGF2 Insulin-like growth factor 2

IZUMO4 Izumo sperm–egg fusion protein 4

PDB1 Pyruvate dehydrogenase E1 component subunit beta, mitochondrial precursor

HSP90A Heat shock 90 kDa protein alpha
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