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Donnan membrane processes (DMPs) are driven by a potential gradient across an ion exchange membrane and have an

advantage over fouling in conventional pressure driven membrane technologies, which are gaining attention. DMP is a

removal, recovery and recycling technology that is commonly used for separation, purification and the concentrating of

metals in different water and waste streams.
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1. Introduction

Metals, specifically heavy metals in effluent and sludge discharges from anthropogenic sources such as households,

agriculture, manufacturing and process industries, are of major concern to environmental regulators . Notable

amongst the metals and those that are classified as the most hazardous metal species are As, Cr, Ni, Cd, Pb, Co, Zn and

Cu. Although the concentration of these metals very depending on the source, they are toxic and non-biodegradable, even

at very low concentrations. Due to the high solubility of these metals, they are readily passed-on, absorbed and

accumulated into the human body through the food chain, thereby causing cancers, neurological disorders, skin diseases,

respiratory problems, congenital disorders, fertility decreases and chronic kidney damage .

Knowing the aforementioned impact on water, soil and air, public concerns have increased over the years resulting in

stricter legislations, most especially in more developed countries . However, various management and control schemes

to address the adverse effects at their point sources and non-point sources have not achieved the extent of impact. While

the presence of the metals in the discharges have been viewed as toxic and require complete removal, new age

engineering considers them as a representation of a significant loss in raw materials. Sustainable treatment options in

addressing the latter view, therefore, look at removal, recovery and reuse technologies (3Rs-Tech).

Ion exchange for the removal, recovery and reuse of metals is a widely known and effective treatment process. It is a

selective, reversible and stoichiometric method that involves the displacement of ionic species by another ionic species in

the exchanger . The exchangers serve as sorbents and are either resins or membranes. Although the mention of ion

exchange usually refers to resins, ion exchange membranes (IEMs) have gained prominence due to their dimensional

stability over resins . Wide spread use of IEMs include sea water desalination, water softening and purification, the

chlor-alkali process, energy production and energy storage .

The Donnan membrane process (DMP), commonly referred to as Donnan Dialysis, is an emerging green treatment

process that integrates IEMs. The first usage of DMP is attributed to Prakash and SenGupta . The DMP involves the

stoichiometric counter transport of ions across an IEM. As a concentration gradient driven process, DMP can be classified

as a 3R-tech used in the recovery, separation and concentration of ions of interest from diluted solutions.

The DMP has often been interchanged with Diffusion Dialysis (DD) due to their indistinguishable principles of operation

and application advantages. Whilst DD is utilized in the recovery of mineral acids or alkalis from waste acid and alkaline

solutions, DMP is applied in the recovery of toxic or valuable heavy metal ions . The simple and easy to operate

DMP system exhibits functional advantages over the conventional ion exchange process, electrodialysis (ED), chemical

precipitation and pressure driven membrane processes. The DMP is an energy efficient, low installation and operational

cost, non-risen regeneration and a non-fouling process that possess rural application benefits . Ion transport

in a DMP occurs as long as the donor phase volume is greater than the receiver phase. Table 1 expounds on the

advantages and disadvantages of some metal removal processes.

Table 1. Advantages and disadvantages of selected metal removal technologies.
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Process Advantages Disadvantage References

Conventional

Ion exchange

Low cost, high selectivity,

little or no use of organic

solvents, regeneration

capability

Resin regeneration requires chemical addition, poor

quality products, long production cycle, finding

suitable resin is a challenge, process is highly pH

sensitive.

Pressure driven

membranes

Wide range application,

simple configuration, high

removal and rejection.

Susceptible to fouling, complex reverse cleaning

process, additional pretreatment process is costly,

internal and external concentration polarization

depending on membrane process, expensive and

non-recyclable drawing solutions for forward osmosis

process, enrichment of contaminant in retentates

causing secondary pollution, non-rejection of

monovalent ions for nanofiltration, high energy

demand for pressure pumps used.

Adsorption

Simple technology, wide

range of metals selectivity,

low cost local, materials

readily available as natural

absorbents,

High cost of absorbent, residue generation and

disposal challenges, adsorbent regeneration complex

and expensive, pH of solution affects sorption to

binding sites, removal efficiency depends on type of

sorbent, synthetic absorbent expensive to produce.

Chemical

precipitation

Simple, low cost of

precipitant, non-selective,

shorter removal time.

pH adjustment is critical as precipitates can

resolubilize, high residue generation and disposal,

high chemical demand, large tanks at high installation

costs, energy inputs required, generation of H S for

sulfide reagent, CO  for carbonate reagent.

Bioremediation

Moderate cost, no waste

generation, minimum or no

disturbance to the soil, no

ecosystem disruption,

minimal energy

requirement, large

contaminants handled at a

time.

Not recommended for non-biodegradable

compounds, products after biodegradation can be

more toxic, problematic upgrading from laboratory

scale, contaminant migration through environmental

resources, time consuming process, remobilization of

stabilized contaminants due to changes in

hydrological and geochemical conditions, inadequate

benchmark values for field application, requires deep

understanding of microbial process.

ED/reverse ED

Ion transport is rapid,

effective in wide pH ranges,

no phase change, not

affected by osmotic

pressure.

Stack clogging and membrane fouling, high energy

consumption, skilled labor, compatibility of membrane

and stacks materials to feed stream solution is highly

required, current density limit, requires post treatment

and pretreatment.

The DMP set-up consists of three phases, namely, the donor phase, which contains the ion of interest for recovery, the

sweep phase, which contains the donating ion to enable the counter transport and, most importantly, the IEM, which

controls and allows selective transport of the ions. Cation exchange membranes (CEMs) are used for removing,

recovering, separating and concentrating metal ions. Anion exchange membranes are applied during specific treatment of

harmful anions such Cl , F , HCO , NO , SO  and AsO  .
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2. Ion Exchange Membranes (IEM)

Monopolar, amphoteric, bipolar and mosaic are the four (4) types of IEMs based on their charge functional groups and

fixed ionic group pattern. Most IEMs for commercial applications are identified as monopolar with a single-line pattern 

. Figure 1 is a schematic diagram for the classification of IEMs.

Figure 1. Categorized ion exchange membranes. (a) Positive or Negatively charged monopolar IEM, (b) Amphoteric IEM,

(c) Bipolar IEM and (d) Mosaic IEM adapted from .

Depending on the charge group interconnection on the matrix phase of the membrane structure, IEMs are identified as

homogenous and heterogeneous with varying properties and process advantages. In a homogeneous membrane,

charged groups are bonded to a polymer backbone, while in a heterogeneous membrane, the ion exchange material is

mixed with the polymeric matrix without chemical bonds between them .

Homogeneous IEMs have higher conductivity, perm selectivity and a more balanced distribution of functional sites, but

they are more costly to produce and have more complex manufacturing phases. Comparatively, heterogeneous IEMs

have better chemical stability and mechanical properties over the homogenous ones . However, the low

electrochemical properties of the heterogeneous IEMs are associated with ionic mobilization pathways, leakage of co-ions

in the solution phase and the availability of inert fractions .

IEMs are designed and produced to have desirable characteristics such as high permselectivity, high conductivity, good

mechanical strength, structural stability and high chemical and thermal stability . The characteristics are also

dependent on factors such as size of the ion exchange resin, resin loading, resin distribution, polymer used, solvent and

method. Cation exchange membranes (CEMs) have proven higher stability in strong alkaline solutions than Anion

exchange membranes (AEMs). Until recently, most commercially available CEMs and AEMs were homogeneous; Aciplex,

Selemion Femion, Nafion, Fumasep, FKS, Ralex and Neosepta are known IEMs . Figure 2 illustrates a typical

transport pathway of ions through a homogenous CEM (Figure 2a) and heterogeneous AEM (Figure 2b).

Figure 2. Ions pathway through a homogeneous CEM (a) and heterogeneous AEM (b).

Non-commercial membranes are often developed for performance evaluation and comparison with commercial

membranes. These membranes are either synthesized or result from structural modification of existing membranes. To

develop the surface, permselectivity efficiency and ion exchange capacity (IEC) of any membrane, various preparation

and modification techniques are applied, which include phase inversion, irradiation and film etching, microfabrication, film

stretching, sintering of powders, track-etching, electro-deposition, sol-gel process and coating (dip coating, in situ

polymerization, plasma polymerization, interfacial polymerization) . However, surface engineering and modification is

focused on the use of solvent-free technologies.
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In short, IEM characteristics such as ion conductivity, hydrophilicity and hydrophobicity, ionic properties, embedded ion

exchange groups, charge density and membrane-ion-affinity are the foundation for application in various ion exchange

processes, which includes DMP . The selectivity transport functionality of the membrane (characterized by

morphology and microstructural variation) for target ions in the midst of multivalent ions influences their choice to achieve

various DMP separation objectives. For target metal ions, the CEM (Figure 2a) is used.

The activation of CEMs prior to usage in a DMP system is essential to achieve a high membrane hydration. It ensures the

setting up of transport pathways for the permeation of ions. Crucial to the conditioning process is the removal of impurities

and factory defects from the surface of the membrane. Immersion and conditioning in acid is commonly adopted by

researchers .

The sequence of conditions commence with immersion in H O , rinsing in distilled water or boiling water and is proceeded

with acid conditioning with HCl, H SO  and/or HNO  at an elevated temperature of ≤90 °C . The treatment chain

is then completed by final rinsing in either deionized water at high or normal temperature. However, most treatments do

not opt for HNO  conditioning. Further treatment of the CEMs with 1% dilute HCl for 3 hrs enhances ionic transport by

increasing the inter-pore hydration of the membrane. Other procedures use NaOH neutralization in between two acid

conditioning steps that alternate between HCl and H SO  at different treatment times and temperatures, including room

temperature, for the same membrane .

3. Donnan Membrane Cell

Four modules, notably the plate and frame, spiral wound, hollow fiber and the tubular type , are known in the

membrane industry. However, two modules are applicable in the DMP system as there is the requirement of separate

solutions flowing on either side of the membrane for counter exchange of the ions. These are the plate and frame and the

tubular modules. The plate and frame modules are one of the earliest in the membrane industry and consist of a flat sheet

membrane and a mesh spacer sandwiched between two blocks and plates. The tubular module consists of smaller

tubular compartment housing membranes that are fitted into a larger tube . Flat sheet modules have low performance

characteristics, while tubular modules have medium performance characteristics, based on performance parameters such

as promoting high cross flow rate, high filtering area to volume packing ratio and a pre-treatment requirement.

Various compartments to contain the donor and sweep phase solutions and membrane have been developed over the

years. These modules are designed to meet main design criteria cited by  for DMP. These compartments are mostly

made from materials such as borosilicate glass, Plexiglas (C O H ) , PVC (C H Cl)  and Teflon (C F ) . A simple two-

compartment cell has seen development with the attachment of external donor and sweep side vessels. Flow patterns are

set-up with compressed air (Figure 3a), magnetic stirrer (Figure 3b) and shaking blocks or baffles (Figure 3c). In addition,

turbulence at the membrane solution surface can be caused by increasing the flow rate of the electrolytic solution for a

DMP compartment in Figure 3d. Zhao et al.  used a similar set-up as demonstrated in Figure 3c and called it a point of

use dialyzer. Additionally, cell arrangements vary and hybrid structures have included a 20 cell pair mounted with CEMs,

11 cells consisting of 5 feed and 6 sweep cells and a 3–4 membrane cell .

Figure 3. Donnan Membrane Process Cell Designs: (a) a simple compartment with compressed air agitation; (b)

Compartment with external vessels and a mixing unit; (c) Point of Use systems; (d) Donnan membrane rig.
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4. Trends for Target Metal Ion

The Donnan membrane process applications cover various industries spanning from the mineral process to the water and

wastewater treatment industry. Depending on the DMP configuration, operating variables that affect recovery, separation

and concentration of target metal ions are the concentration and flowrates of donor and sweep phases, electrolytic sweep

solution, valence of counter ion, pH, experimental duration, membrane type and morphology .

Most researchers use the one-factor at a time (OFAT) approach to evaluate the transport of metal ions. In OFAT, one

factor is varied while the other variables are kept constant. Using OFAT, multiple experiments cannot be run, while a high

number of experiments makes it cost intensive and time and resource consuming, with the inability to assess the

interactive effect of variable optimal settings .

The statistical approach, also known as design of experiment (DOE), allows researchers to evaluate the independent and

interacting effect of various process variables under consideration. Therefore, statistical models were developed that aid

in process optimization .

Two relevant polynomial models are often involved. The first model, as seen in Equation (3), is for special cases, and this

includes first-degree models (d = 1). The second degree model (d = 2) is also expressed in Equation (4)  as:

 

 

 

 

where Y, β0, βi, xi and ϵ are the characteristic response, constant term, coefficient, independent process variable and

random experimental error at a zero mean, respectively.

A statistical approach has been used in only a few DMP studies involving target metal ions to assess the impact of

process variables on recovery. A face centered central composite model developed for Al  considered the donor phase

concentration, donor phase flowrate, sweep concentration and sweep flowrate . Furthermore, screening studies for the

four factors indicated that the sweep concentration had an insignificant effect on aluminum recovery . As such, a Box–

Behnkein model was developed using the donor concentration, donor flowrate and sweep concentration as factors for the

design matrix.

Kinetic models have been developed for monovalent (Na , K , Cs  and Ag ), divalent (Ca , Ba , Mg  and Sr ) and

trivalent (Al ) metal ions based on Fick’s and Nernst–Planck’s equations for ion fluxes . Interestingly, all

kinetic models for the mass transfer of the metal ions through the membrane have been conducted using the Nafion 117

membrane. Different commercially available Nafion membranes for possible DMP studies and their respective properties

are presented in Table 2 .

Table 2. Commercially available Nafion membranes with their respective properties.

Nafion Formation Equivalent Weight (g eq ) Nominal Thickness (µm) Basic Weight (g m )

N 115

Extrusion

1100 127 250

N 117 1100 178–183 360

N 1035 1000 89 175

NR 212

Solution casted

1100 50–51 100

NR 211 1100 25.4 50
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Nafion Formation Equivalent Weight (g eq ) Nominal Thickness (µm) Basic Weight (g m )

XL

Reinforced

1100 27.5 55

HP - 20 43.5

424 1100 180 540

1110 Extrusion 1100 254 500
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