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Gasochromic WO3 nanostructure sensors work based on changes in their optical properties and color variation when

exposed to hydrogen gas. They can work at low or room temperatures and, therefore, are good candidates for the

detection of hydrogen leakage with low risk of explosion. Once their morphology and chemical composition are carefully

designed, they can be used for the realization of sensitive, selective, low-cost, and flexible hydrogen sensors.
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1. Hydrogen Gas

Hydrogen is a gas with no color, odor, or taste and cannot be detected by human senses . Due to its efficiency,

renewability, and green nature, it can replace fossil fuels in the near future . Nevertheless, because of its small size,

high diffusion coefficient, and consequently easy permeation through most materials, it is difficult to store hydrogen.

Furthermore, hydrogen is highly explosive with a broad flammability range (4–75 vol%) and possesses an extremely low

ignition energy . Therefore, it is important to develop low temperature, reliable and safe gas sensors for detecting

hydrogen gas. So far, several gas sensors based on different mechanisms have been reported for sensing hydrogen,

including fiber-optic , catalytic , electrochemical , acoustic , resistive , thermoelectric , and gasochromic 

sensors . Each of these sensors has its own merits and shortages . For example, resistive gas sensors are

inexpensive, simple in design and operation, highly responsive, and exhibit good stability . However, they can

only work efficiently at high temperatures , which increases the risk of hydrogen explosion during detection.

Gasochromic sensors have the advantage of working at low temperatures, which can significantly decrease the risk of

hydrogen explosion. Furthermore, in some cases, they can be fabricated on flexible substrates, with eye-readable color

changes, which remarkably facilitate the detection of hydrogen in different places. In addition, the removal of electrical

power from ambient atmosphere, high resistance to electromagnetic noise, and compatibility with optical fibers make them

advantageous in hydrogen gas detection .

2. WO  and Its Crystal Structures

Tungsten trioxide (WO ) is a very promising metal oxide with diverse properties. It has an n-type (E  = 2.60–3.25 eV) 

 semiconducting nature and unique electrical properties. Further, it is transparent to visible and infrared light. Therefore,

it has been used in different applications including smart windows , photocatalysts , solar cells , humidity sensors

, and gas sensors . Moreover, due to its excellent coloration efficiency , WO  is the most used chromogenic

material in photochromic, electrochromic, and gasochromic applications .

Tungsten oxide has a perovskite-type WO  octahedral crystal structure. In its structure, W  ions occupy the corners of

the octahedra, and oxygen ions are located at mid-crystal edge. In the ideal form, the octahedra are connected at the

corners. The central atom (C) is absent and this defective perovskite configuration is often referred to as the ReO

structure . Similar to the behavior of most perovskites and ceramics, depending on the temperature, WO  crystals can

structurally transform in the following order: Monoclinic (ε-WO , < −43 °C), triclinic (δ-WO , −43 to 17 °C), monoclinic (γ-

WO , 17–330 °C), orthorhombic (β-WO , 330–740 °C), and tetragonal (α-WO  > 740 °C) . The monoclinic crystal

structure is the most stable at room temperature . The large voids generated in WO  octahedral networks in the WO

structure induce some variations in the position of W and in the WO  octahedron orientation. Thus, displacement of

tungsten from the center of the octahedron and tilting of the WO  octahedra are two kinds of distortions , which lead to

11 different structures of WO  . The gasochromic coloration of crystalline WO  is associated with changes in its

structure from monoclinic to tetragonal and cubic . For example, Inouye et al.  reported crystal structure transition

from monoclinic to tetragonal in RF-sputtered WO  films upon exposure to hydrogen gas. However, the structure of

hydrated WO ·xH O sensors does not change during gasochromic detection of hydrogen gas .
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3. Chromogenic: Definition, Materials and Basics

Chromogenics is a Greek word with the stem “chromo” for color. It refers to the study of materials whose optical properties

(or color) change as a function of external ambient conditions . Chromogenic materials generally have wide bandgaps

and are transparent in the visible range, but they reversibly change from being transparent to a dark color in the presence

of an electric field (electrochromic coloration), light (photochromic coloration), or when they are exposed to a gas

(gasochromic coloration) . Therefore, gasochromism refers to reversible changes in optical properties or color when a

material is exposed to a gas . Gasochromic materials exhibit a promising potential for use as gas sensors. WO ,

which is light yellow in color, is one of the most important chromogenic materials known thus far. It exhibits a deep blue

color upon exposure to hydrogen gas . In addition to WO , other materials reported for gasochromic applications

include V O  , VO  , MO  , MoO  , (MoO )  (V O )  , mixed silver/nickel ammonium

phosphomolybdate , (Ti-V-Ta)O  , Ni(OH)  , peroxopolytungstic acid , and metals like Y . This effect has

also been exploited for the detection of other gases such as volatile organic compounds , NO  , H S, SO  , NH

, XeF  , cyclohexane , CO, and Cl  . Among the different gasochromic materials available, the most important

ones are WO  and MoO . However, due to its weak color change properties and the existence of several phases whose

formation depends on the growth method, molybdenum oxide has received less attention for gasochromic studies .

4. Gasochromic Properties of WO3 nanostructures

The ability of WO  to undergo reversible changes in its optical properties when exposed to an electric field was first

reported by Deb in 1973 . Nineteen years later, Ito  reported the potential of WO  for gasochromic studies. Thus far,

the optical properties of WO  nanostructures have been modulated by applying an electric field (electrochromism), UV

irradiation (photochromism), or a gas (gasochromism) . Gasochromic coloration of WO  is mostly associated with

hydrogen gas . In contrast to the electrochromic response, the presence of catalytic noble metals on the surfaces of

WO  nanostructures is necessary to induce an acceptable gasochromic effect. The most common catalysts used are Pd

, Au , and Pt . They promote chemical reactions by reducing the activation energy between WO  and

hydrogen gas. Color changes occur in gasochromic WO  sensors when H  ions intercalate with the WO  layer after the

dissociation of gas molecules (H ) into atoms by the action of noble metals. The optical properties of WO  films can be

reversibly changed with the insertion and extraction of H  ions and electrons into the WO  films, which is accompanied by

redox changes leading to the formation of W  ions . Gasochromic measurements are often carried out by

monitoring optical properties, such as absorbance/transmittance/reflectance in convenient wavelength ranges (visible-

NIR) . Such measurements offer simple, low-cost, and highly selective analytical methods for detecting specific gases

. In addition, the stability of the gas sensor can be enhanced as measurements are most often conducted at low or

room temperatures.
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