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Gasochromic WO3 nanostructure sensors work based on changes in their optical properties and color variation

when exposed to hydrogen gas. They can work at low or room temperatures and, therefore, are good candidates
for the detection of hydrogen leakage with low risk of explosion. Once their morphology and chemical composition
are carefully designed, they can be used for the realization of sensitive, selective, low-cost, and flexible hydrogen

Sensors.

gasochromic nanostructured WO3 gas sensor hydrogen gas sensing mechanism

| 1. Hydrogen Gas

Hydrogen is a gas with no color, odor, or taste and cannot be detected by human senses 2, Due to its efficiency,
renewability, and green nature, it can replace fossil fuels in the near future [, Nevertheless, because of its small
size, high diffusion coefficient, and consequently easy permeation through most materials, it is difficult to store
hydrogen. Furthermore, hydrogen is highly explosive with a broad flammability range (4—75 vol%) and possesses
an extremely low ignition energy MEl. Therefore, it is important to develop low temperature, reliable and safe gas
sensors for detecting hydrogen gas. So far, several gas sensors based on different mechanisms have been
reported for sensing hydrogen, including fiber-optic &, catalytic [, electrochemical [, acoustic &, resistive 19,
thermoelectric 22, and gasochromic sensors 22, Each of these sensors has its own merits and shortages 2. For
example, resistive gas sensors are inexpensive, simple in design and operation, highly responsive, and exhibit
good stability 1451261 However, they can only work efficiently at high temperatures L4, which increases the risk of
hydrogen explosion during detection. Gasochromic sensors have the advantage of working at low temperatures,
which can significantly decrease the risk of hydrogen explosion. Furthermore, in some cases, they can be
fabricated on flexible substrates, with eye-readable color changes, which remarkably facilitate the detection of
hydrogen in different places. In addition, the removal of electrical power from ambient atmosphere, high resistance

to electromagnetic noise, and compatibility with optical fibers make them advantageous in hydrogen gas detection
18]

| 2. WO; and Its Crystal Structures

Tungsten trioxide (WO3) is a very promising metal oxide with diverse properties. It has an n-type (E4 = 2.60-3.25
eV) 929 semiconducting nature and unique electrical properties. Further, it is transparent to visible and infrared

light. Therefore, it has been used in different applications including smart windows 211, photocatalysts 22, solar
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cells 231 humidity sensors 24, and gas sensors [22l. Moreover, due to its excellent coloration efficiency 28], WO is

the most used chromogenic material in photochromic, electrochromic, and gasochromic applications 27,

Tungsten oxide has a perovskite-type WOg octahedral crystal structure. In its structure, W®* ions occupy the
corners of the octahedra, and oxygen ions are located at mid-crystal edge. In the ideal form, the octahedra are
connected at the corners. The central atom (C) is absent and this defective perovskite configuration is often
referred to as the ReOj structure 28 Similar to the behavior of most perovskites and ceramics,
depending on the temperature, WO3 crystals can structurally transform in the following order:
Monoclinic (e-WO3, < —-43 °C), triclinic (3-WO3, —43 to 17 °C), monoclinic (y-WO3, 17-330 °C),
orthorhombic (B-WO3, 330-740 °C), and tetragonal (a-WO3 > 740 °C) 2289 The monoclinic crystal
structure is the most stable at room temperature 29, The large voids generated in WOg octahedral
networks in the WOg3; structure induce some variations in the position of W and in the WOg
octahedron orientation. Thus, displacement of tungsten from the center of the octahedron and tilting
of the WOg octahedra are two kinds of distortions 28 which lead to 11 different structures of WO3
[31 The gasochromic coloration of crystalline WOj3 is associated with changes in its structure from
monoclinic to tetragonal and cubic B2, For example, Inouye et al. 28 reported crystal structure
transition from monoclinic to tetragonal in RF-sputtered WO3 films upon exposure to hydrogen gas.
However, the structure of hydrated WO3-xH,O sensors does not change during gasochromic
detection of hydrogen gas 221,

| 3. Chromogenic: Definition, Materials and Basics

Chromogenics is a Greek word with the stem “chromo” for color. It refers to the study of materials whose optical
properties (or color) change as a function of external ambient conditions 1. Chromogenic materials generally
have wide bandgaps and are transparent in the visible range, but they reversibly change from being transparent to
a dark color in the presence of an electric field (electrochromic coloration), light (photochromic coloration), or when
they are exposed to a gas (gasochromic coloration) B4, Therefore, gasochromism refers to reversible changes in
optical properties or color when a material is exposed to a gas EI33, Gasochromic materials exhibit a promising
potential for use as gas sensors. WO3, which is light yellow in color, is one of the most important chromogenic
materials known thus far. It exhibits a deep blue color upon exposure to hydrogen gas 28, In addition to WO3, other
materials reported for gasochromic applications include V,05 BAE8I3AMI o 4l MO, “¥2 MoO; 431, (MoO3);_y
(V,05), ¥4 mixed silver/nickel ammonium phosphomolybdate 43I, (Ti-V-Ta)O, 2], Ni(OH), €l peroxopolytungstic
acid 4748 and metals like Y 2. This effect has also been exploited for the detection of other gases such as
volatile organic compounds B9, NO, Bl H,S, SO, B2 NH; B3l XeF, B4 cyclohexane B2, CO, and Cl, 18],
Among the different gasochromic materials available, the most important ones are WO3 and MoO,. However, due
to its weak color change properties and the existence of several phases whose formation depends on the growth

method, molybdenum oxide has received less attention for gasochromic studies 28!,

| 4. Gasochromic Properties of WO3 nanostructures
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The ability of WO3 to undergo reversible changes in its optical properties when exposed to an electric field was first
reported by Deb in 1973 B7. Nineteen years later, Ito B8 reported the potential of WO5 for gasochromic studies.
Thus far, the optical properties of WO3; nanostructures have been modulated by applying an electric field
(electrochromism), UV irradiation (photochromism), or a gas (gasochromism) B2, Gasochromic coloration of WO4
is mostly associated with hydrogen gas 2. In contrast to the electrochromic response, the presence of catalytic
noble metals on the surfaces of WO3; nanostructures is necessary to induce an acceptable gasochromic effect. The
most common catalysts used are Pd 861 Ay 39 and Pt 62631, They promote chemical reactions by reducing the
activation energy between WO3 and hydrogen gas. Color changes occur in gasochromic WO5; sensors when H*
ions intercalate with the WO5 layer after the dissociation of gas molecules (H,) into atoms by the action of noble
metals. The optical properties of WO; films can be reversibly changed with the insertion and extraction of H* ions
and electrons into the WOj4 films, which is accompanied by redox changes leading to the formation of W°* ions 64
65 Gasochromic measurements are often carried out by monitoring optical properties, such as
absorbance/transmittance/reflectance in convenient wavelength ranges (visible-NIR) €8, Such measurements offer
simple, low-cost, and highly selective analytical methods for detecting specific gases BY. In addition, the stability of

the gas sensor can be enhanced as measurements are most often conducted at low or room temperatures.
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