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Gasochromic WO3 nanostructure sensors work based on changes in their optical properties and color variation

when exposed to hydrogen gas. They can work at low or room temperatures and, therefore, are good candidates

for the detection of hydrogen leakage with low risk of explosion. Once their morphology and chemical composition

are carefully designed, they can be used for the realization of sensitive, selective, low-cost, and flexible hydrogen

sensors.

gasochromic  nanostructured WO3  gas sensor  hydrogen gas  sensing mechanism

1. Hydrogen Gas

Hydrogen is a gas with no color, odor, or taste and cannot be detected by human senses . Due to its efficiency,

renewability, and green nature, it can replace fossil fuels in the near future . Nevertheless, because of its small

size, high diffusion coefficient, and consequently easy permeation through most materials, it is difficult to store

hydrogen. Furthermore, hydrogen is highly explosive with a broad flammability range (4–75 vol%) and possesses

an extremely low ignition energy . Therefore, it is important to develop low temperature, reliable and safe gas

sensors for detecting hydrogen gas. So far, several gas sensors based on different mechanisms have been

reported for sensing hydrogen, including fiber-optic , catalytic , electrochemical , acoustic , resistive ,

thermoelectric , and gasochromic  sensors . Each of these sensors has its own merits and shortages . For

example, resistive gas sensors are inexpensive, simple in design and operation, highly responsive, and exhibit

good stability . However, they can only work efficiently at high temperatures , which increases the risk of

hydrogen explosion during detection. Gasochromic sensors have the advantage of working at low temperatures,

which can significantly decrease the risk of hydrogen explosion. Furthermore, in some cases, they can be

fabricated on flexible substrates, with eye-readable color changes, which remarkably facilitate the detection of

hydrogen in different places. In addition, the removal of electrical power from ambient atmosphere, high resistance

to electromagnetic noise, and compatibility with optical fibers make them advantageous in hydrogen gas detection

.

2. WO  and Its Crystal Structures

Tungsten trioxide (WO ) is a very promising metal oxide with diverse properties. It has an n-type (E  = 2.60–3.25

eV)  semiconducting nature and unique electrical properties. Further, it is transparent to visible and infrared

light. Therefore, it has been used in different applications including smart windows , photocatalysts , solar
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cells , humidity sensors , and gas sensors . Moreover, due to its excellent coloration efficiency , WO  is

the most used chromogenic material in photochromic, electrochromic, and gasochromic applications .

Tungsten oxide has a perovskite-type WO  octahedral crystal structure. In its structure, W  ions occupy the

corners of the octahedra, and oxygen ions are located at mid-crystal edge. In the ideal form, the octahedra are

connected at the corners. The central atom (C) is absent and this defective perovskite configuration is often

referred to as the ReO  structure .  Similar to the behavior of most perovskites and ceramics,
depending on the temperature, WO  crystals can structurally transform in the following order:
Monoclinic (ε-WO , < −43 °C), triclinic (δ-WO , −43 to 17 °C), monoclinic (γ-WO , 17–330 °C),
orthorhombic (β-WO , 330–740 °C), and tetragonal (α-WO  > 740 °C) . The monoclinic crystal
structure is the most stable at room temperature . The large voids generated in WO  octahedral
networks in the WO  structure induce some variations in the position of W and in the WO
octahedron orientation. Thus, displacement of tungsten from the center of the octahedron and tilting
of the WO  octahedra are two kinds of distortions , which lead to 11 different structures of WO

. The gasochromic coloration of crystalline WO  is associated with changes in its structure from
monoclinic to tetragonal and cubic . For example, Inouye et al.  reported crystal structure
transition from monoclinic to tetragonal in RF-sputtered WO  films upon exposure to hydrogen gas.
However, the structure of hydrated WO ·xH O sensors does not change during gasochromic
detection of hydrogen gas .

3. Chromogenic: Definition, Materials and Basics

Chromogenics is a Greek word with the stem “chromo” for color. It refers to the study of materials whose optical

properties (or color) change as a function of external ambient conditions . Chromogenic materials generally

have wide bandgaps and are transparent in the visible range, but they reversibly change from being transparent to

a dark color in the presence of an electric field (electrochromic coloration), light (photochromic coloration), or when

they are exposed to a gas (gasochromic coloration) . Therefore, gasochromism refers to reversible changes in

optical properties or color when a material is exposed to a gas . Gasochromic materials exhibit a promising

potential for use as gas sensors. WO , which is light yellow in color, is one of the most important chromogenic

materials known thus far. It exhibits a deep blue color upon exposure to hydrogen gas . In addition to WO , other

materials reported for gasochromic applications include V O  , VO  , MO  , MoO  , (MoO )

(V O )  , mixed silver/nickel ammonium phosphomolybdate , (Ti-V-Ta)O  , Ni(OH)  , peroxopolytungstic

acid , and metals like Y . This effect has also been exploited for the detection of other gases such as

volatile organic compounds , NO  , H S, SO  , NH  , XeF  , cyclohexane , CO, and Cl  .

Among the different gasochromic materials available, the most important ones are WO  and MoO . However, due

to its weak color change properties and the existence of several phases whose formation depends on the growth

method, molybdenum oxide has received less attention for gasochromic studies .

4. Gasochromic Properties of WO3 nanostructures
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The ability of WO  to undergo reversible changes in its optical properties when exposed to an electric field was first

reported by Deb in 1973 . Nineteen years later, Ito  reported the potential of WO  for gasochromic studies.

Thus far, the optical properties of WO  nanostructures have been modulated by applying an electric field

(electrochromism), UV irradiation (photochromism), or a gas (gasochromism) . Gasochromic coloration of WO

is mostly associated with hydrogen gas . In contrast to the electrochromic response, the presence of catalytic

noble metals on the surfaces of WO  nanostructures is necessary to induce an acceptable gasochromic effect. The

most common catalysts used are Pd , Au , and Pt . They promote chemical reactions by reducing the

activation energy between WO  and hydrogen gas. Color changes occur in gasochromic WO  sensors when H

ions intercalate with the WO  layer after the dissociation of gas molecules (H ) into atoms by the action of noble

metals. The optical properties of WO  films can be reversibly changed with the insertion and extraction of H  ions

and electrons into the WO  films, which is accompanied by redox changes leading to the formation of W  ions 

. Gasochromic measurements are often carried out by monitoring optical properties, such as

absorbance/transmittance/reflectance in convenient wavelength ranges (visible-NIR) . Such measurements offer

simple, low-cost, and highly selective analytical methods for detecting specific gases . In addition, the stability of

the gas sensor can be enhanced as measurements are most often conducted at low or room temperatures.
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