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Lack of disease-modifying therapy against epileptogenesis reflects the complexity of the disease pathogenesis as

well as the high demand to explore novel treatment strategies. In the pursuit of developing new therapeutic

strategies against epileptogenesis, neurodegenerative proteins have recently gained increased attention. Owing to

the fact that neurodegenerative disease and epileptogenesis possibly share a common underlying mechanism,

targeting neurodegenerative proteins against epileptogenesis might represent a promising therapeutic approach.
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1. Introduction

Epileptogenesis refers to the gradual process by which the normal brain develops epilepsy. It involves an early

brain-damaging insult, which prompts a cascade of molecular and cellular alterations that might ultimately lead to

the occurrence of spontaneous seizures . Epilepsy is a devastating brain disorder exhibited by an enduring

susceptibility to induce epileptic seizures . It is characterized by the occurrence (more than 24 h apart) of two

unprovoked seizures, a single unprovoked seizure with a high risk of relapse, and the appearance of epileptic

syndrome . Epilepsy is caused by abnormal coordinated firing of neuronal cells mainly due to disparity among

excitatory and inhibitory neurotransmission . Epilepsy has emerged as a serious global health concern affection

around 70 million individuals of the population worldwide . There is an increased understanding that epilepsy

does not merely exist alone, and it is always associated with other neurobehavioral comorbidities, including

cognitive impairment, depression, anxiety, schizophrenia, autism, etc., possibly sharing a bidirectional relationship

. Epilepsy is a disease where people at risk can be identified but nothing can be done to halt or prevent the

disease progression . Despite the availability of around 30 United States Food and Drug Administration (USFDA)

approved anti-epileptic drugs (AEDs) , these drugs only provide symptomatic relief rather than halting/terminating

the disease progression. This clearly reflects the complex pathology of epilepsy, reflecting the further extensive

need for pre-clinical and clinical research.

Though the precise cause of epilepsy is still elusive, seizures might be the consequence of any insult that disturbs

the normal brain function. These insults comprise of acquired causes (stroke or traumatic brain injury), infectious

(such as neurocysticercosis), and autoimmune diseases, as well as genetic mutations, etc. . There is an

increased understanding of the contribution of neuroinflammation, channelopathies, neurodegeneration,

neurogenesis, neural reorganization, and plasticity in epilepsy . In recent years, several findings have

repeatedly reinforced the role of neuroinflammation in epilepsy , indicating that targeting brain inflammation
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might be a possible therapeutic strategy against epilepsy. Similarly, traumatic brain injury (TBI) also leads to post

traumatic epilepsy (PTE) . However, the time duration that the TBI leads to PTE is not well understood, with

different existing opinions regarding the percentage that develop epilepsy after TBI. Epilepsy also exhibits

idiopathic “genetic” etiology or symptomatic “acquired” elements. Several susceptibility genes encoding ion

channels, including voltage-gated sodium, potassium, and calcium channels, have been unraveled from genetic

investigations . Mutations in three alpha subunit genes (SCN1A, SCN2A, SCN8A) of the voltage-gated sodium

channels (VGSCs) have been implicated in epilepsy . Voltage-gated potassium (Kv) channels, calcium-activated

potassium channels, inwardly rectifying (Kir) channels, and tandem pore domain (K2P) channels have also been

implicated in epilepsy . The high-voltage-activated (HVA) Ca  (P/Q-type) channel, encoded by CACNA1A, has

been associated with early onset epileptic encephalopathy .

Neurodegeneration taking place near the epileptogenic regions may induce neuroinflammatory response, network

re-organization, and/or a series of molecular changes that may contribute to the transformation of the normal brain

to an epileptic state, i.e., temporal lobe epilepsy (TLE) . During epileptogenic phenomena, neurodegeneration

mainly occurs in the hilus, cornu ammonis (CA)1, CA2 and CA3 pyramidal cell layer, and granule cells. Besides the

hippocampus, neurodegeneration also occurs in the amygdala; the neighboring entorhinal, perirhinal, and para

hippocampal cortices; the thalamus; and the cerebellum . Neuroinflammation and excitotoxicity can result in

neuronal loss , ultimately leading to changes in the hippocampal networks that account for epileptogenesis ,

further suggesting that the manipulation of neurodegenerative phenomena by inhibition of inflammation and

excitotoxicity may limit the disruption of the hippocampal circuitry and the progression of epileptic seizures .

Moreover, there is evidence that neurodegenerative diseases and epileptogenesis after an acquired brain insult

might share a common underlying mechanism .

2. Aβ-Mediated Neurodegeneration and Its Implication in
Epilepsy

The β- and γ-secretase cleavage of amyloid precursor protein (APP) generates Aβ, which is the key component of

senile plaques and, along with abnormal Aβ accumulation, represents the hallmark of Alzheimer’s disease (AD).

APP is a membrane-spanning protein exhibiting a large extracellular domain and a smaller intracellular domain.

APP is acknowledged as the key source of the Aβ peptide observed in the neuritic plaques of AD patients and is a

functionally crucial molecule in its full-length configuration, as well as being the source of several fragments with

variable effects on neural function . APP was shown to exert crucial physiological roles in the mammalian brain

mainly by regulating the synaptic functions and neuronal survival, and even modulating GABA neurotransmission

. APP is extensively investigated against AD pathogenesis due to its role in the disease’s pathogenesis through

the generation of toxic Aβ aggregates, potentially initiating neurodegeneration .

Progressive neurodegeneration, with subsequent cognitive and behavioral impairments, characterizes AD

pathogenesis. Aβ aggregation into oligomers and eventually into fibrils is established as the driving mechanism for

neurotoxicity . Brain Aβ oligomers, rather than amyloid plaques, are highly associated with neuronal loss . Aβ

exists in two different isoforms, with Aβ40 being more abundant, whereas Aβ42 is more susceptible to aggregation
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and more relevant to the pathogenic process . Intracerebroventricular (ICV) injection of Aβ  has been shown

to mediate neurodegeneration and induce an AD-like phenotype in animals and non-human primates . The

underlying mechanisms behind Aβ -induced neurodegeneration includes mitochondrial disruption, oxidative

stress, degeneration of cholinergic neurons, and increased Aβ  deposition, ultimately leading to cell death .

Furthermore, Aβ regulates the NMDA receptors (NMDARs) and disrupts the ionic balance between synaptic and

extra synaptic NMDAR signaling ; however, the precise mechanism behind Aβ-mediated excitotoxicity stills

remains obscure.

A plethora of data supports Aβ-mediated neurodegeneration in AD . However, this neurodegenerative

protein has also gained increased attention in epileptogenesis. Aβ has mainly been implicated in the pathology of

acquired epilepsy, where increased amyloid production and deposition have been shown to contribute to acquired

epilepsy . In this case, spontaneous seizures are mainly initiated after injury to the normal brain as a result of

brain trauma, stroke, infection, or SE . Tg2576 mice expressing human APP with the Swedish mutation

(K670N/M671L) guided by the hamster prion protein demonstrated electrically evoked seizures, as evident by the

lower after-discharge threshold (ADT) current and increased vulnerability to kindling . In accordance, Tg2576

mice exhibited spontaneous seizures, increased mortality, and lower thresholds to PTZ-induced seizures,

suggesting that overexpression of APP might contribute to seizure activity in neurodegenerative disorders . On

the contrary, zebrafish larvae lacking APP are susceptible to PTZ-induced seizures. Moreover, it was unraveled

that intact prion protein is required for the seizure susceptibility of APP mutants .

Investigating the role of Aβ in the context of epilepsy is of crucial importance based on several studies supporting a

close association of AD and epileptic seizures, possibly sharing common underlying mechanisms . In this

respect, transgenic mice overexpressing mutant APP and producing excessive amounts of Aβ are crucial for

understanding the mechanism of AD pathogenesis . Familial AD (FAD) is the less prominent form of AD, with an

earlier onset compared to sporadic AD (accounting for more than 90% of the AD cases). FAD has been associated

with mutations in three major genes: APP, presenilin1 (PS-1), and presenilin 2 (PS-2), which ultimately induce an

abnormal overproduction of Aβ . PS-1 is the catalytic subunit of γ-secretase that contributes to the production of

Aβ, and gene mutations have a tendency to increase the produced Aβ42/Aβ40 ratio . Moreover, PS-1 mutations

might also cause seizures independent of the APP processing . In a study of APdE9  mice (carrying mutant

human  APPswe  and  PS1dE9  genes), a greater propensity of epileptic seizures was observed at the time of

appearance of the first amyloid plaque compared to wild-type (WT) littermates. The Aβ-induced sustained

depolarization was proposed as the cause of epileptic seizures in APdE9 mice . APP metabolites and mainly the

APP intracellular domain (AICD) might modulate the neuronal networks as evident by the abnormal

electroencephalogram (EEG) spiking events and a strong susceptibility to induced seizures by transgenic mice

overexpressing AICD and its binding partner Fe65 .

There is further evidence that the neurodegenerative proteins associated with AD are dysregulated during

epileptogenesis. In the experimental model of TLE induced by electrical stimulation at an intratrain pulse frequency

of 50 Hz in female SD rats, dysregulation in the proteins associated with Aβ processing, deposition, plaque

formation, and Aβ-associated pathology was observed from bioinformatics analysis .
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Pro-epileptogenic effects of Aβ have been reported in the 4-aminopyridine (4AP)-induced seizure model of male

Wistar rats. More specifically, a single injection of Aβ was shown to facilitate 4AP-induced seizure expression and

decrease the latency for 4AP-induced seizures. It further surged the number of generalized seizures, impaired the

time for full recovery, and favored seizure-induced death. These pro-epileptogenic effects of Aβ have been

correlated with the disruption of normal hippocampal function by affecting the synaptic efficacy and its coordinated

network activity .

Kainic acid (KA) is an extensively used epileptogenic, and is the neuroexcitotoxic agent that acts on kainate

receptors (KARs) in the central nervous system (CNS) . Systemic administration of KA leads to prolonged

seizures, resulting in excitotoxic hippocampal neuronal injury mainly in the CA3 area . In an experimental model

of induced TLE in male SD rats by KA (12 mg/kg, I.P.), increased APP expression and its processing enzymes was

observed. It is worth noting that APP levels were only increased significantly at 2 and 12 days but not at 12 h post-

KA administration when compared to normal control rats. In fact, in the control hippocampus, APP immunoreactivity

was mainly located in the CA1-CA3 pyramidal neurons and in granule cells of the DG but not in glial cells. On the

contrary, after 12 days of KA administration, APP was localized mainly in the glial cells of the hippocampus.

Immunoreactive APP was found to mainly be localized in a subset of glial fibrillary acidic protein (GFAP)-labelled

reactive astrocytes. In addition, increased expression of beta-site APP cleaving enzyme 1 (BACE1) and several

components of the γ-secretase complex such as presenilin 1 (PS-1), Nicastrin, presenilin enhancer 2 (PEN2), and

anterior pharynx defective 1 (APH1), along with elevated expression of Aβ   and Aβ , was observed in the

hippocampus of KA-treated rats compared to normal controls. In accordance, treatment of primary rat astrocytic

cultures with KA resulted in increased Aβ production/secretion without compromising the cell viability . This

finding suggests that activated astrocytes demonstrate a crucial role in KA-induced neuronal degeneration by

upregulating APP expression and increasing Aβ peptide production. Furthermore, it implies that lowering/inhibiting

Aβ levels might exert beneficial effects in lessening the seizures and reducing neurodegeneration .

The relation between Aβ and epilepsy has also been explored in clinical studies of patients with refractory epilepsy

(RE) who had undergone resection of the temporal lobe or hippocampal sections. An increased expression of Aβ

precursor protein (β-APP) was detected when compared to the controls. Moreover, immunostaining confirmed the

localization of β-APP mainly in the neuronal cytoplasm and the axons of patients with RE. This finding indicates

that elevated β-APP expression levels might play a crucial role in the pathomechanism underlying RE . In the

hippocampus and temporal lobe cortex of drug-resistant TLE patients who underwent temporal lobe resection,

several molecular alterations that resemble those seen in AD patients were observed, including an upregulation of

full-length APP expression and enhanced APP amyloidogenic processing, evident by increased phosphorylated

APP (pAPP), Aβ , and Aβ  expression .

Although there is existing strong evidence that Aβ possibly contributes to the generation of epileptic seizures, and

given the availability of several treatment strategies targeting Aβ , there is a lack of clinical studies targeting Aβ

in epilepsy and therefore the therapeutic value of this intervention remains unanswered.
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