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The increasing use of electronic health record (EHR)-based systems has led to the generation of clinical data at an

unprecedented rate, which produces an untapped resource for healthcare experts to improve the quality of care. Despite

the growing demand for adopting EHRs, the large amount of clinical data has made some analytical and cognitive

processes more challenging. The emergence of a type of computational system called visual analytics has the potential to

handle information overload challenges in EHRs by integrating analytics techniques with interactive visualizations. 
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1. Introduction

In recent years, medical organizations are increasingly deploying electronic health record (EHR)-based systems that

generate, store, and manage their data. Therefore, the amount of data available to clinical researchers and clinicians

continues to grow at an unprecedented rate, creating an untapped resource with the capacity to improve the healthcare

system . The EHR-based systems are used to detect hidden patterns and trends, monitor patient conditions , reduce

medical errors , detect adverse drug events , and ultimately improve quality of care . However, despite the

evidence showing the benefits of EHR-based systems, they rarely improve healthcare experts’ ability to make better

clinical decisions by having access to more comprehensive information . Access to large volumes of clinical data has

made some analytical and cognitive processes more difficult for healthcare experts. As the amount of data stored in EHRs

continues to grow exponentially, and new EHR-based systems are implemented for those already overrun with too much

data, there is a growing demand for computational systems that can handle the huge amount of clinical data.

Visual analytics (VA) systems have shown significant promise in addressing information overload challenges in EHRs by

combining analytics techniques with interactive visualizations . For a VA system to work well, there must be a strong

coupling among all its components . Such components include but are not limited to tasks, interactive visual

representations, and analytics techniques. Analytics has the potential to facilitate healthcare experts’ clinical decision-

making process by using techniques from various fields such as statistics, machine learning, and data mining. Completing

analytics, interactive visualizations allow healthcare experts to explore the underlying data, alter the representations, and

guide the analytics techniques to accomplish their tasks . VA systems fuse the strengths of both analytics

techniques and interactive visualizations to support the execution of EHR-driven tasks. VA is needed to support the

intuitive analysis of EHRs for healthcare experts while masking the data’s underlying complexity. Clinical researchers can

use VA to perform population-based analysis and gain insights from large volumes of patient data. Moreover, VA can also

support physicians in tracking symptom evolution during disease progression and creating and visualizing detection

models for disease surveillance . The complex and diverse challenges and applications of VA in the analysis

and exploration of EHRs have led to the development of several EHR-based VA systems, which aim to fulfill the

computational and cognitive needs of healthcare experts.

2. EHR-Based Visual Analytics Systems

DecisionFlow  is a VA system that supports the analysis and exploration of temporal event sequences in high-

dimensional datasets. It allows users to test different hypotheses regarding the factors that might affect the patient

outcome and compare multiple complex patient event pathways by integrating on-demand statistical analysis techniques

with interactive flow-based visualization. DecisionFlow helps users to specify a subsequence of interest with a milestone-

based query interface. Then the matching data is aggregated to generate a DecisionFlow graph that contains a linear

sequence of nodes (i.e., milestones) connected by directed edges. The system then analyzes the graph to extract multiple

statistics (e.g., gender and age distributions and edge summary statistics). The system includes three main linked views-

namely, the temporal flow view, edge overview view, and event statists view. The temporal flow view visualizes the
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DecisionFlow graph using a directed graph of nodes representing milestones where nodes are mapped to grey rectangles

and are arranged in temporal order from left to right. The edges that connect these nodes are represented by two marks—

namely, the time edges and the link edges, and they are color-coded to encode the average outcome. The edge overview

panel summarizes the subsequence of interest that are returned from the query interface by showing multiple aggregate

statistics. The event statistic view displays a color-coded bubble chart that represents different edge summary statistics.

RetainVIS  is a VA system that assists healthcare experts in the exploration of patient medical records in the context of

risk prediction tasks. It provides users with the means to investigate common patterns in a patient’s history to identify

which medical codes or patient visits (i.e., sequence and timing) contribute to the prediction score. It can also help users

to conduct different what-if analyses by testing hypothetical scenarios on patients (e.g., edit/add/remove medical code,

alter visit intervals). Furthermore, RetainVIs allows users to provide feedback to the model based on their domain

knowledge if the model acts in an undesirable manner. RetainVIS generates prediction scores based on the RetainEX

technique, a bidirectional recurrent neural networks (RNN) model that harnesses the temporal information stored in

patient records (e.g., time intervals between patient visits). It increases the interpretability and interactivity of models by

calculating code-level and visit-level contribution scores.

This system integrates RetainEX with multiple interactive visualizations. The Overview summarizes patients regarding

their contribution scores, medical codes, and predicted diagnosis risks using a scatter plot, multiple bar charts, an area

chart, and a circle chart. Patient Summary shows a temporal summary of the selected patients. It contains a table, a code

bar chart, and a contribution progress area chart. Patient Summary provides a summary description of the selected

patients and represents aggregated contribution scores of medical codes over time and their mean contribution scores.

Patient List shows selected patients in a row of rectangles. It allows users to compare and explore multiple patients and

select a patient of interest to view their details in the Patient Details view. Patient Details view is composed of a line chart

of prediction scores, a temporal code chart of contribution scores of medical codes, and a code bar chart representing the

most contributing medical codes for each patient. Finally, Patient Editor represents each patient visit horizontally in a

temporal order and lists medical codes for each visit downwards. It allows users to test hypothetical scenarios by

changing the date of the visit or inserting new medical codes into a visit. Once the user changes are complete, the system

generates the new model and returns the new predicted risk and contribution scores on top of the original records.

DPvis  is a VA system that supports clinical researchers in interactively discovering and exploring disease progression

patterns and studying interactions between such patterns and patient’s characteristics. It also allows users to test and

refine hypotheses for multiple clinically relevant subgroup cohorts in an ad hoc manner. DPVis models disease

progression pathways by characterizing a patient’s clinical course as a sequence of transitions between multiple states

where each state describes a co-occurring pattern of observed symptoms and variables. Then, it uses a class of

unsupervised models, namely- continuous-time hidden Markov models (CT-HMMs), to discover these hidden states and

state transitions from large-scale longitudinal patient records. These models identify associations between disease

progression patterns and various observed variables and predict a patient’s future states. DPVis combines the outcome of

HMM models with interactive visualizations to assist medical experts in interpreting these models and clinically make

sense of the discovered patterns.

DPVis is composed of seven linked views. The Static Variable Distribution view contains a list of selected measures in a

horizontal bar chart. The Observed Attributes view contains feature matrix, feature distribution, feature heatmap over time,

and feature over time. It summarizes all the characteristics of disease states that are discovered by HMM. State

Transitions view shows multiple representations of state-to-state transition patterns over a series of visits or over time. It

includes four views-namely, Pathway over Observation, Pathway by Time Unit, Pathway Waterfall, and State Transition

Chord Diagram. Frequently Occurring State Transition Pattern view shows a list of frequently occurring state sequential

patterns. Subject Timeline represents an individual patient’s observations over time. It contains Dual Kernel Densities view

and Subject List view. State Sequence Query Builder allows users to create and refine cohorts based on state transitions.

Cohort view enables users to load and save intermediate results. Once users create more than two cohorts in the Cohorts

view, they can trigger the Comparison Mode between the selected views. This selection then turns all views into the

Comparison Mode.

The VA system for pharmacovigilance in electronic medical records developed by Ledieu et al.  integrates a modified

version of the Smith–Waterman (SW) sequence alignment algorithm with an interactive web interface to detect

inappropriate drug administration and inadequate treatment decisions in patient sequences. The SW algorithm is used to

compare a reference sequence (i.e., a sequence specified by the user) and a patient’s sequence, where each sequence

is considered a string of characters. Each character in the sequence represents a clinical event, such as a laboratory test

result or a drug administration. The algorithm calculates a similarity score for each comparison. A high similarity score

corresponds to a higher similarity between the reference and the patient sequences. This VA system allows users to
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create the reference sequence(s) in a query interface. It provides them with a visual dictionary of event types (e.g., the

discretized numerical events are encoded by color-coded squares or the direction of arrows represents the trend of

change) in a grey rectangular area. To form a pattern, users can drag and drop these icons down to a query line. The

system also enables the user to indicate time-constraint events in the query. The adopted SW algorithm returns the

search result, which is displayed as a list of patients and their corresponding sequences, sorted based on their similarity

score to the reference sequence. Each sequence is aligned to the reference pattern or its closest match. The time interval

between the time-constraint event and the aligned events is shown by a vertical line along with the time duration in days

on top of it.

Gotz et al.  develop a VA system to explore and query clinical event sequences stored in EHRs by combining on-

demand analytics with visual queries and interactive visualizations (Figure 1). The visual query module provides an

intuitive user interface that enables users to retrieve cohorts of patients that satisfy complex clinical episode

specifications. Users can define a clinical episode by specifying milestones, time gaps, preconditions (i.e., a set of

constraints that should be satisfied before the starting milestone), and outcome measures in the query interface. Upon

submission of the query, the system returns a set of matching patient event sequences. The returned event sequence for

each patient includes the specified milestones and several intermediate events that occur between milestones. Each

episode is subdivided into a series of intermediate episodes at each milestone.

Figure 1. The screenshot of the VA system developed by Gotz et al.  including, the visual query panel, the milestone

timeline, the cohort overview, and the pattern diagram. Source: Reprinted with permission from ref. , Copyright (2014),

with permission from Elsevier.

Frequent pattern mining (FPM) is then performed first on the overall episode as well as on each of the intermediate

episodes that are retrieved by the visual query module. The FPM engine includes two main components-namely, the

frequent pattern miner and the statistical pattern analyzer. The frequent pattern miner uses the bitmap-based Sequential

PAttern Miner (SPAM)  algorithm for pattern discovery. SPAM employs a search strategy that combines a depth-first

traversal of the search space with an efficient pruning mechanism. It takes a set of event sequences and a user-specified

support as inputs and returns a set of frequent patterns as an output. Then the statistical pattern analyzer computes

correlations (e.g., Pearson correlation, odds ratio, and information gain) between the mined patterns and the outcome

measure. Finally, an interactive visualization allows users to explore the results and discover temporal patterns. The

interactive visualization component is composed of three linked views. The cohort overview shows the age and gender

distributions for patients that satisfy the query specifications. The milestone timeline represents the sequence of

milestones using a series of ordered, vertical grey bars. The bars are connected by color-coded edges, where each edge

has two parts-namely, the time edge, and the link edge. The time edge maps the mean duration between the milestones

while the link edge connects the bars to show sequentially. The pattern diagram shows the set of patterns mined from the

part of the episode that is selected in the milestone timeline in a scatter plot where the x and y axes encode the level of

support for a specific pattern for patients with positive and negative outcomes, respectively.

The VA system developed by Simpao et al.  facilitates the dynamic and continuous monitoring of medication alerts and

care providers’ responses through an automated, user-friendly dashboard. It allows pharmacists and care providers to

examine and filter the alert data based on patient location and ordering provider type and to identify which specific orders

triggered the drug-drug interaction alerts. This VA dashboard is an integral part of a hospital quality improvement initiative

to improve medication safety and reduce alert fatigue by deactivating irrelevant alert rules. The system is developed in

collaboration with a clinical decision support committee that is asked to perform three interventions to deactivate irrelevant

drug-drug interaction alert rules. The impact of these interventions on pharmacists’ alerts and override rates is analyzed

using an interrupted time-series framework with piecewise regression. Baseline IQRs and median rates are compared to
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IQRs and median rates following three intervention phases of drug-drug interaction deactivations and are tested for

statistical significance using the Wilcoxon rank-sum test. The user interface of this system includes a central display area

with graphical and tabular data representations. Medication alert and override rates, different alert types, and various care

providers, and patient characteristics are displayed and explored at a specific time point or across a user-defined time

interval using multiple filters and limits.

The MOSAIC dashboard system  aims to support the prediction and diagnosis of type 2 diabetes mellitus (T2DM) by

analyzing clinical and home monitoring data. The system integrates a data querying and mining technique with an

interactive user interface to assist caregivers in devising management strategies and therapeutic interventions for T2DM

complications. The mining techniques are triggered by the query module that is responsible for retrieving the data from the

i2b2 data warehouse, calling the proper data mining technique, and sending the results back to the user interface. The

data mining module implements several temporal analytics models such as temporal abstractions, the care flow mining

algorithm, drug exposure pattern detection, and risk prediction models for T2DM complications. Temporal abstractions are

extracted using the Time Series Abstractor (JTSA) tool that provides a library of techniques that can be employed for time-

series processing and abstraction . The care flow mining technique uses the temporal sequence of events to determine

the most frequent clinical pathways patients experience during their care process, automatically generating groups of

patients with similar care histories . The proportion of days covered is used to summarize the dug purchase patterns

using the data gathered from administrative resources. Finally, several risk prediction models are generated to estimate

the risk of T2DM complications .

The graphical user interface of MOSAIC has two primary components designed for (1) clinical decision support and (2)

outcome assessment on populations of interest. The clinical decision support system dashboard is composed of three

sections-namely, metabolic control, frequent temporal patterns, and drug purchase patterns. The metabolic control

evaluation section is based on a “traffic light” metaphor to enable quick assessment of the control level of certain

parameters. The frequent pattern mining section is composed of a scatter plot and a timeline plot. The drug purchase

graph shows all the purchases made by a patient for each drug class using a scatter plot. The outcome assessment

dashboard provides an overview of the treatments’ outcomes on the population of patients with T2DM to clinical

researchers. It includes summary charts that represent patient counts grouped by clinical and demographic variables. It

also shows the most frequent temporal patterns of the patients selected in the summary chart using timeline graphs.

VisualDecisionLinc  is a VA system that helps clinicians to identify subpopulations of patients with similar clinical

characteristics and to understand the risks and effectiveness of different treatment options for these subpopulations using

psychiatric patients’ data with major depressive disorder (MDD). The system aims to improve and simplify the decision-

making process by reducing the number of available therapeutic options to those that have proven to be most effective

with minimal side-effects. To define the MDD comparative population, VisualDecisionLinc uses a patient data-driven

approach where the patient’s medical profile is used as ‘seed’ data (i.e., patients with a primary diagnosis of MDD and

their last prescribed medications) to identify a comparable group of patients with similar clinical characteristics. At the

computational level, the system creates a bin for each medication and inserts patients into bins of their prescribed

medication. At the same time, the system tags patients based on their treatment outcome response, which is reported in

the database in the form of a clinical global impression (CGI) score. CGI score is a seven-point scale that offers a brief

score of the clinician’s assessment of the severity of the patient’s illness prior to and after starting treatment. A lower CGI

score indicates a better treatment outcome for the patient. After the binning process is done, the system uses additional

computational processes to quantify the collective comparative MDD patient response into a ‘% Patient Improved’ score.

VisualDecisionLinc is composed of five linked views. Data view of patient demographics shows patient demographic data

such as age, gender, and race, to name a few. Data view of summarized medication response displays ‘% Patient

Improved’ score and the absolute number of patients that are used to compute this score. Color-coded dots placed next to

the medication names encode the ‘% Patient Improved’ score greater than 10 (green dots) and less (red dots). Data view

of comorbidities shows a list of comorbid conditions among patients on a selected medication from the summarized

medication view. Data view of contextual patient treatment outcome shows the CGI score of a patient over time. It also

displays prescribed medications and their timespan using horizontal bars below the CGI temporal view. Finally, the data

view of median-based historical response to medication shows the historic outcome response to the selected medication.

Blue and red lines reflect the median-based historical trend in medication outcome from the comparative populations and

patient’s response to the selected medication in the past, respectively.

Care Pathway Explorer  is an interactive hierarchical information exploration system that can help physicians analyze

patients’ longitudinal medical records. The system provides an overview of the frequent patterns that are mined from

patient event sequences. The physician then studies these patterns and interactively selects patterns of interest for more

details. The system computes the group of patients that match the physician’s specified sub-traces. Then the event traces
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for those patients are extracted using a deeper level of the user-specified hierarchy. The system feeds these traces to the

frequent pattern miner engine, which mines frequent patterns and analyzes how these patterns are associated with

outcomes using a modified version of the SPAM algorithm . The patterns are then visualized alongside meaningful

statistics.

The visual interface of Care Pathway Explorer features two complementary views. The overview contains a bubble chart

and represents events of the most frequent patterns mined by the frequent pattern miner engine. Each bubble encodes a

medical event that occurs frequently among patients and is computationally positioned close to events with which it most

frequently occurs to show an overview of clusters of patterns. The flow view shows how bubbles connect to each other

using a visualization similar to the Sankey diagram. Events in the most frequent patterns are encoded by nodes, and

event nodes belonging to the same pattern are connected by edges. Both bubbles and patterns are color-coded according

to their association with the outcome, which is determined by the Pearson correlation.

RegressionExplorer  is an interactive VA system that enables clinical researchers to quickly generate, compare, and

evaluate many regression models. It also helps to formulate new hypotheses and steer the development of models by

allowing the user to compare candidate models across several subpopulations. Upon loading the dataset and selecting

the appropriate responder that captures the condition of interest, the system allows the researcher to analyze the one-to-

one relationships between each covariate and the responder by performing a univariate analysis. The results are

displayed as colored rectangles next to the variable names in the univariate analysis view. The significance level of an

effect is determined using p-value, where a lower p-value results in a higher level of significance and a more saturated

color. Red represents a positive effect, while blue represents a negative effect. Next, the system allows the user to

perform stepwise multivariate analysis by dragging variables from the list of variables to the variable selection view. After

each selection, the system generates a new model displayed as a single row of the multivariate model matrix. Columns in

the matrix show the levels of significance for the included covariates following the same convention as for the univariate

view. The system also displays histograms, along with some basic descriptive statistics for all the covariate distributions to

provide basic checks and interpretation during analysis.

Another integral part of the RegressionExplorer is subgroup analysis that allows the user to gain more insight into the

subpopulations throughout the univariate and multivariate analysis. To support subgroup analysis, the system enables the

user to drag and drop a variable from the univariate analysis view to the population view, which leads to the partition of the

population. If the user drops another variable into the population view, all the previously created subpopulations are

partitioned recursively. The subpopulation tree is represented as an icicle plot. The system follows the same basic

approach for both univariate and multivariate analysis when handling subpopulations. The primary difference is that the

cells that used to show significant effects are now subdivided into sub-cells (i.e., icicle plots).

The VA system developed by Mica et al.  helps guide patient assessment and therapeutic decisions for physicians

using severely injured patients’ clinical data in a trauma center (Figure 2). The system allows the user to filter cohorts of

patients based on multiple parameters, including age, body temperature, injury severity score (ISS), multiple lab results,

and abbreviated injury scale (AIS) score. With every change of the filtering criteria, a query is sent to the server to extract

a group of patients that satisfy the query specifications using several algorithms such as statistical frequency grouping,

time interval simplification, and consecutive event merging. The system enables the user to explore the results using a

variation of the Sankey diagram. Each node in the graph encodes a medical state (e.g., treatment or outcome), and each

link encodes transitions between consecutive states in the cohort of interest. The height of nodes and links represents the

relative number of patients that share the state and transition, respectively. The color encodes the ratio of patients that

develop the outcome of interest. Statistically, to justify the distribution of patients based on clinical scores, the system

integrates binary logistic retrogression along with receiver operating characteristic (ROC).

[27]

[34]

[35]



Figure 2. The screenshot of the VA system developed by Mica et al.  shows the pathway of the early death outcome of

a hypothetical patient with an age of 35 years, an ISS of 35, and a temperature at admission of 35 °C using a Sankey

diagram. Source: Reprinted with permission from ref. , Copyright (2020).

Visual Temporal Analysis Laboratory (ViTA-Lab)  integrates temporal data mining techniques with query-driven

interactive visualizations to support a knowledge-based exploration of time-oriented clinical data and the discovery of

interesting patterns within it. ViTA-Lab is composed of three main interfaces. The main visualization interface provides an

overview of the longitudinal concepts and the distribution of derived temporal abstractions (TA) for individual and multiple

patients at different temporal granularities. It provides the user with a knowledge-based browser and a graphical widget

for selecting an individual patient or a group of patients. It uses a scatter diagram over time and a modified version of the

bar chart visualization technique to show the distribution of TAs and help the user discover trends in these distributions.

The temporal association chart (TAC) allows visual exploration and discovery of probabilistic temporal associations

among the distributions of various abstract concepts at different times. TAC’s input is a group of patients and a set of

concepts that are chosen within the same or a different time window panel. The system calculates the distributions of

values for each concept within the chosen time. Each concept is represented by a rectangular bar. The corresponding

data values between two consecutive concepts for each patient are linked. Multiple links, including the same pair of

values for a group of patients, are aggregated into a temporal association rule. This rule indicates the probability of having

the second concept’s value, given the first concept’s value, and the total frequency of that combination. Thus, a group of

patients who have this specific combination of values from two concepts, simultaneously or at different times based on the

user-specified time period, is represented by a temporal rule.

The pattern explorer supports the exploration of temporal patterns that are discovered by data-driven computational

techniques. It works based on a version of the KarmaLego algorithm, which is used for the discovery of frequent temporal

patterns . Components of the output’s temporal pattern (a pair of concept and value) are represented by horizontal

lines that are ordered according to each component’s start time, maintaining, in a proportional fashion, the mean duration

of each component and of the time gaps among components. The color of the same type of component in all patterns

stays the same. The pattern explorer allows the user to recognize the meaning of a temporal pattern, that is, which

components make up the pattern, and what temporal associations such as overlaps, before, or after hold between them.

RadVis  is a VA system that supports psychiatrists in analyzing and exploring multidimensional medical datasets for

patients who have dementia (Figure 3). It allows the user to get a better understanding of the characteristics of patient

clusters and analyze the variable values of data comprising each cluster at the same time. The system enables the user

to select variables of interest from “Variable Selection Menu” and select “Cluster Segmentation Menu” to segment clusters

of patients based on their traits. The user can choose the number of clusters for segmentation after selecting either a

forgy cluster or a random cluster algorithm. Following either of the clustering algorithms, the cluster’s central value is

calculated based on the number of clusters. After the Euclidean distance between the central value and each node is

calculated, multiple nodes are included to obtain clusters of similar value. This process is repeated until the central value

stays constant.

Figure 3. The screenshot of RadVis  combing 3D RadVis and parallel coordinates. Source: image used under CC-BY

4.0 License.

RadVis displays the distribution of data instances using 3-dimensional radial coordinate visualization (3D RadVis) that

prevents node overlap. Furthermore, it facilitates the distribution of several nodes into optimum positions regardless of the

number of dimensions. A patient with dementia is represented by a single node in this visualization. Nodes are color-

coded according to the cluster they belong to. RadVis also supports a multi-filtering function through parallel coordinates
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plot to assign different conditions for a more comprehensive analysis. The parallel coordinates plot is used to display both

categorical and numerical variables. It allows the user to check a value that satisfies a specific condition in the 3D RadVis.

It also displays the variable values of a node that is selected in the 3D RadVis.

The predictive VA system developed by Sun et al.  aims to predict the risk and timing of deterioration in hypertension

control using EHRs. The system is composed of three main modules. The feature engineering module converts clinical

data into a feature matrix and a target label vector that can be used to build the predictive model. The target label is

derived based on the physician’s assessment of blood pressure control status as in-control (i.e., positive) versus out-of-

control (i.e., negative). The positive and negative transition points (from an episode of positive (negative) assessment

points into negative (positive) points) are considered as target labels for the prediction model. Next, to turn event

sequences into feature variables, the system specifies an observation window for each feature concept (e.g., diagnosis

concept). It then aggregates all the events of the same feature concept within the observation window into a single value.

The system then applies a two-level feature selection process. In the first level, within the same concept, features are

chosen based on the information gain. Then a greedy forward selection algorithm is used to choose which concepts to

keep. In the next step, the system starts iteratively combining features from different concepts until the combination fails to

improve the performance of the prediction. Finally, various techniques, such as naive Bayes, logistic regression, and

random forests, are used to generate transition point models. The system allows the user to explore the prediction results

and other events through interactive visualization. An individual patient’s timeline is represented by a line, and each

hypertension control assessment event is represented by a circle. Red and blue circles represent in-control and out-of-

control blood pressure episodes, respectively.

The VA system developed by Guo et al.  helps clinicians to explore medical records from both multivariate and

temporal perspectives and identify and analyze similar records (Figure 4). The system integrates an unsupervised

learning-based technique with interactive linked views to support physicians in several tasks such as finding similar

records based on a focal patient record, comparing patients’ medical feature values at a specific time point, or identifying

(dis)similar time stamps among similar records. The system provides two overviews of all patients: One is for patients’

similarities according to the combination of tests taken during the collected time period, and the other view shows patient’s

similarities according to the test values. To create the first overview, the system applies the Jaccard index  to compute

the similarity. Then it extracts clusters of similar patients by combing a dimensionality reduction (DR) technique (i.e., t-

SNE) and a density-based clustering method (i.e., HDBSCAN). For the second overview, the system first calculates the

similarity of each pair of the test records and then similar to the other overview; it applies t-SNE to visualize the similarity

relationships. To visualize the clustering information, each point (i.e., each patient’s record) is colored based on the

assigned cluster-ID. The system allows the user to select a patient of interest from these overviews. It then automatically

searches for the top-3 similar patients based on the pre-computed similarities. The system uses autoencoder-based event

embedding  and sequence to sequence learning (seq2seq)  technique to handle various event types and convert

records with different lengths to vectors of the same length. Then, it computes the similarity of each pair of patients using

a certain distance metric, such as the Euclidean distance. The system provides multiple line charts to show changes of

dissimilarities of test records over time between the patient of interest and top-3 similar patients and to visualize a

statistical overview of the focal and top-3 similar patients.

Figure 4. The screenshot of the VA system developed by Guo et al. . (a,b) display each neonate’s similarities of tests

taken and the records of test values, respectively. (c) shows changes of dissimilarities of test records over time between

the neonate chosen from (a,b) and top-3 similar neonates. (d) displays a statistical overview of the chosen neonate and

top-3 similar neonates. (e) provides all the test results at the selected time in (c) or (f). (f) displays the temporal changes

of values of the chosen test in (d) or (e). (g) lists all medical test names. Source: Reprinted with permission from ref. ,

Copyright (2020), with permission from Elsevier.
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SubVIS  is a VA system to support medical experts in interpreting high-dimensional clinical data and exploring

subspace clusters from different perspectives (Figure 5). It enables the user to analyze each subspace independent of its

association to a certain clustering technique. It allows the use of every subspace clustering technique available at

OpenSubspace Framework . SubVis allows a three-level exploration of data and clusters through its interface. The first

level provides the user with a general overview of all the detected subspace clusters, their properties, and the distribution

of dimensions within each subspace cluster using interactive bar charts. A matrix-based heatmap is also available to give

more details on the association between the pair-wise distance. The second exploration level allows the user to choose a

subset of relevant clusters in the multidimensional scaling (MDS)  plot to get an aggregated overview of the cluster

members in an aggregation table. The distance between various clusters in the MDS plot shows their pair-wise similarity.

SubVis contains various similarity measures, such as Overlapping, Jaccard Index, and Dice Coefficient. The system

enables the user to inspect the distribution of the cluster members in every dimension for each cluster. In the last

exploration level, a table-lens-like view  supports the exploration of the actual data records and provides interactive

coloring and sorting of the record and its dimension.

Figure 5. A screenshot of SubVIS  including (A) MDS projection plot, (B) MDS small multiples, (C) barcharts showing

the distribution properties of the subspaces, (D) heatmap, (E) aggregation table, and (F) table lens. Source: image used

under CC-BY License.

The VA system developed by Huang et al.  supports the interactive exploration of patient trajectories to assist

physicians and clinical researchers in identifying chronic diseases and determining how a group of patients with chronic

diseases might go on to develop other comorbidities over time (Figure 6). The system first aligns patient trajectories

based on the time they are diagnosed with a specific chronic disease. Then once the user specifies the time windows, the

patient trajectories are divided based on their timestamps, and patients within the same time window are aggregated into

one. The system then clusters the patient records at each time window based on a similarity measure and creates a set of

cohorts. The system supports frequency-based cohort clustering and hierarchical cohort clustering techniques. A cohort of

patient trajectory network is built based on the clustering result where each node represents a cohort at a time window,

and each edge shows the relationship between two cohorts at consecutive time windows where their members overlap.

The system allows the user to filter edges using the variance-based association filtering technique by adjusting the

entropy threshold. When the threshold is zero, only associations between fully overlapped cohorts are shown; in the case

when the threshold is high, all associations are visualized. A Sankey-like timeline then visualizes the output results. The

nodes are color-coded based on the unique comorbidities, and the color of the edges is determined by the two nodes it

connects (i.e., a gradient for smooth transitions). Each cohort has a label that shows its dominant features. In addition, the

cardinality of both nodes and edges are represented by their height.
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Figure 6. The screenshot of the VA system developed by Huang et al.  shows the result of frequency-based cohort

clustering using a Sankey diagram. Source: image used under CC-BY 4.0 License.

CarePre  is a clinical decision assistance system that supports the exploration and interpretation of deep learning

prediction models that are developed to predict future diagnosis events for a focal patient based on their medical

background. It assists physicians in making more informed decisions by letting them analyze contributing factors in

prediction results and explore the outcomes of possible treatments through interactive visualizations. CarePre allows the

physician to input potential diagnoses (based on the patient’s symptoms and tests) for a focal patient into the system. The

system then automatically estimates the risk of future diseases for the patient based on their medical history using a state-

of-the-art deep learning technique and allows the physician to explore the results and the details of the historical medical

records in the prediction view. The prediction view shows the patient’s event sequence leading up to the time point of

prediction, which is represented by rectangular nodes arranged horizontally in order of their occurrence. The predicted

likelihood of each diagnosis is also displayed as a series of rectangular nodes where the color saturation for each node

shows the prevalence of the predicted diagnosis across the records for a population of similar patients.

In the next step, the physician can specify a query to retrieve a group of similar patients to help interpret the prediction

results. CarePre measures similarity between sequences by computing the similarity between each pair of events using

the Euclidean distance of the corresponding event vectors. It then displays event sequence data for the focal patient as

well as a group of similar patients. It also aggregates the event sequences for similar patients into a flow-based

visualization to allow a one-to-many comparison between the focal patient and a group of similar patients and to show the

overall evolution of treatments and diseases over time. Lastly, the physician can explore alternative treatment plans and

identify the key factors that contribute to the prediction result through various interactions such as editing the focal

patient’s events (e.g., adding events, changing the order) in the prediction view and comparing the edited event sequence

in the outcome analysis view.

Peekquence  is a VA system that aims to make the frequent sequence mining results more interpretable by allowing the

user to explore the patterns by ranking them based on their variability or correlation to the outcome. It can also integrate

patterns with a patient timeline to help the user understand where the patterns occur in the actual data. Peekquence uses

the SPAM  frequent sequence mining algorithm to detect the most frequent sequences. The system uses four linked

views to visualize the result of SPAM on the patient’s medical records. All the views use an event glyph to visualize the

event sequences. The event glyph represents each unique event type appearing in the mined patterns by a circle and is

color-coded based on a categorical ontology. These event glyphs are labeled with an abbreviation of the name of the

event type. The sequence network view displays the frequency of co-occurring events within patterns that are mined using

SPAM. The event types are represented by the nodes, and the two co-occurring nodes within patterns are connected by

an edge. The pattern list view displays all the mined patterns, aligned vertically. Each row represents a pattern that is

visualized as a sequence of circular event glyphs. Furthermore, the association of the patterns with the outcome is

represented by the stacked bar chart next to the sequence. The event co-occurrence histogram view shows the frequency
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of co-occurring events with a selected pattern from the pattern list view. Each event type is represented by a bar

partitioned into three blocks to show events occurring before, within, and after the chosen pattern. Lastly, the timeline view

displays the patient’s event sequences aligned according to the selected pattern.

PHENOTREE  is a hierarchical and interactive phenotyping VA system that allows physicians to participate in the

phenotyping process of large-scale patient records. It enables the user to explore patient cohorts, and to create, interpret,

and evaluate phenotypes by generating and navigating a phenotype hierarchy. The system uses the sparse principal

component analysis (SPCA) to identify key clinical features that describe the population given a cohort or sub-cohorts of

patients. These key clinical features are used to build deeper phenotypes at finer granularities by expanding the

phenotype hierarchy. Patients that are associated with each key feature are grouped into individual sub-cohorts. The

system then iteratively applies the SPCS to each sub-cohort of patients created in the previous step. PHENOTREE

assists physicians in identifying groups of phenotypes and their corresponding patient sub-cohorts at different

granularities through this process. The system utilizes the radial Reingold-Tilford tree to visualize the results. Each node in

the tree represents a structured phenotype and a sub-cohort characterized by this phenotype.

VALENCIA  is a VA system that aims to address the challenges of high-dimensional EHRs by integrating several

dimensionality reduction (DR) and cluster analysis (CA) techniques with real-time analytics and interactive visualizations

(Figure 7). VALENCIA’s analytics engine has two components—namely, DR and CA engines. The DR engine incorporates

several DR techniques to transform EHRs from the high-dimensional space to one with lower dimensions. The CA engine

then uses several clustering techniques to classify the data points in this low-dimensional space into meaningful groups

with similar characteristics. VALENCIA allows the user to choose the most appropriate combination of DR and CA

techniques and explore the results through two main views—namely, DR and CA views. The DR view has four subviews,

including raw-data, projected-features, association, and variance subviews. These subviews allow the user to choose their

features of interest, select the DR technique, adjust the configuration parameters, investigate how features are associated

with transformed dimensions, and choose dimensions to be included in the CA engine. The CA view has three subviews—

namely, hierarchical subview, frequency subview, and projected-observation subview. These subviews allow the user to

examine the hierarchical structure of the CA results, choose the CA technique and configuration parameters, and observe

the distribution of features in each subset of the data.

Figure 7. The screenshot of VALENCIA  showing (a) the DR view and (b) the CA view. Source: image by authors.

VISA_M3R3  is a VA system that allows clinical researchers to identify medications or medication combinations that are

associated with a higher risk of acute kidney injury (AKI) (Figure 8). The system incorporates regression, frequent itemset

mining, and interactive visualization to help the user explore the relationship between medications and AKI. The analytics

module of Visa_M3R3 is composed of two components. The first component is the single-medication analyzer that

focuses on finding associations between individual medications and AKI using multivariate regression. The multiple-
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medications analyzer aims to identify associations between medication combinations and AKI using frequent itemset

mining and regression. All models are validated through Bonferroni correction and represented in multiple interactive

views. The regression models generated from single-medication and multiple-medications analyzers are represented in

two scatter plots in the single-medication and multiple-medication views. The output of the frequent itemset mining is

shown using a chord diagram in the frequent-itemset view. The user can filter and control the information presented in

other views using sliders in the covariates view. Finally, the medication-hierarchy view displays additional information

regarding data elements using a data table.

Figure 8. The screenshot of VISA_M3R3  showing (A) the single-medication view, (B) the multiple-medication view, (C)

the covariates view, (D) the data table, and (E) the frequent-itemset view. Source: Image by authors.

References

1. Murdoch, T.B.; Detsky, A.S. The Inevitable Application of Big Data to Health Care. JAMA J. Am. Med. Assoc. 2013, 309,
1351–1352.

2. Doupi, P. Using EHR Data for Monitoring and Promoting Patient Safety: Reviewing the Evidence on Trigger Tools.
Stud. Health Technol. Inf. 2012, 180, 786–790.

3. Agrawal, A. Medication Errors: Prevention Using Information Technology Systems. Br. J. Clin. Pharmacol. 2009, 67,
681–686.

4. Dey, S.; Luo, H.; Fokoue, A.; Hu, J.; Zhang, P. Predicting Adverse Drug Reactions through Interpretable Deep Learning
Framework. BMC Bioinform. 2018, 19, 476.

5. Abdullah, S.S.; Rostamzadeh, N.; Sedig, K.; Lizotte, D.J.; Garg, A.X.; McArthur, E. Machine Learning for Identifying
Medication-Associated Acute Kidney Injury. Informatics 2020, 7, 18.

6. Tang, P.C.; McDonald, C.J. Electronic health record systems. In Biomedical Informatics: Computer Applications in
Health Care and Biomedicine; Shortliffe, E.H., Cimino, J.J., Eds.; Health Informatics; Springer: New York, NY, USA,
2006; pp. 447–475. ISBN 978-0-387-36278-6.

7. Christensen, T.; Grimsmo, A. Instant Availability of Patient Records, but Diminished Availability of Patient Information: A
Multi-Method Study of GP’s Use of Electronic Patient Records. BMC Med. Inform. Decis. Mak. 2008, 8, 12.

8. Rostamzadeh, N.; Abdullah, S.S.; Sedig, K. Data-Driven Activities Involving Electronic Health Records: An Activity and
Task Analysis Framework for Interactive Visualization Tools. Multimodal Technol. Interact. 2020, 4, 7.

9. Heisey-Grove, D.; Danehy, L.N.; Consolazio, M.; Lynch, K.; Mostashari, F. A National Study of Challenges to Electronic
Health Record Adoption and Meaningful Use. Med. Care 2014, 52, 144–148.

10. Lau, F.; Price, M.; Boyd, J.; Partridge, C.; Bell, H.; Raworth, R. Impact of Electronic Medical Record on Physician
Practice in Office Settings: A Systematic Review. BMC Med. Inform. Decis. Mak. 2012, 12, 10.

11. Ola, O.; Sedig, K. The Challenge of Big Data in Public Health: An Opportunity for Visual Analytics. Online J. Public
Health Inf. 2014, 5, 223.

12. Keim, D.A.; Mansmann, F.; Thomas, J. Visual Analytics: How Much Visualization and How Much Analytics? ACM
SIGKDD Explor. Newsl. 2010, 11, 5.

[54]



13. Sedig, K.; Parsons, P.; Babanski, A. Towards a Characterization of Interactivity in Visual Analytics. J. Multimed.
Process. Technol. 2012, 3, 12–28.

14. Ribarsky, W.; Fisher, B.; Pottenger, W.M. Science of Analytical Reasoning. Inf. Vis. 2009.

15. Vamathevan, J.; Clark, D.; Czodrowski, P.; Dunham, I.; Ferran, E.; Lee, G.; Li, B.; Madabhushi, A.; Shah, P.; Spitzer,
M.; et al. Applications of Machine Learning in Drug Discovery and Development. Nat. Rev. Drug Discov. 2019, 18, 463–
477.

16. Cortez, P.; Embrechts, M.J. Using Sensitivity Analysis and Visualization Techniques to Open Black Box Data Mining
Models. Inf. Sci. 2013, 225, 1–17.

17. Keim, D.A.; Munzner, T.; Rossi, F.; Verleysen, M. Bridging Information Visualization with Machine Learning (Dagstuhl
Seminar 15101). Dagstuhl Rep. 2015, 5, 1–27.

18. Rajwan, Y.G.; Barclay, P.W.; Lee, T.; Sun, I.-F.; Passaretti, C.; Lehmann, H. Visualizing Central Line –Associated Blood
Stream Infection (CLABSI) Outcome Data for Decision Making by Health Care Consumers and Practitioners—An
Evaluation Study. Online J. Public Health Inf. 2013, 5, 218.

19. Goldsmith, M.-R.; Transue, T.R.; Chang, D.T.; Tornero-Velez, R.; Breen, M.S.; Dary, C.C. PAVA: Physiological and
Anatomical Visual Analytics for Mapping of Tissue-Specific Concentration and Time-Course Data. J. Pharm. Pharm.
2010, 37, 277–287.

20. Perer, A.; Sun, J. MatrixFlow: Temporal Network Visual Analytics to Track Symptom Evolution during Disease
Progression. AMIA Annu. Symp. Proc. 2012, 2012, 716–725.

21. Lo, Y.-S.; Lee, W.-S.; Liu, C.-T. Utilization of Electronic Medical Records to Build a Detection Model for Surveillance of
Healthcare-Associated Urinary Tract Infections. J. Med. Syst. 2013, 37, 9923.

22. Gotz, D.; Stavropoulos, H. Decisionflow: Visual Analytics for High-Dimensional Temporal Event Sequence Data. IEEE
Trans. Vis. Comput. Graph. 2014, 20, 1783–1792.

23. Kwon, B.C.; Choi, M.-J.; Kim, J.T.; Choi, E.; Kim, Y.B.; Kwon, S.; Sun, J.; Choo, J. Retainvis: Visual Analytics with
Interpretable and Interactive Recurrent Neural Networks on Electronic Medical Records. IEEE Trans. Vis. Comput.
Graph. 2018, 25, 299–309.

24. Kwon, B.C.; Anand, V.; Severson, K.A.; Ghosh, S.; Sun, Z.; Frohnert, B.I.; Lundgren, M.; Ng, K. DPVis: Visual Analytics
with Hidden Markov Models for Disease Progression Pathways. IEEE Trans. Vis. Comput. Graph. 2020.

25. Ledieu, T.; Bouzille, G.; Plaisant, C.; Thiessard, F.; Polard, E.; Cuggia, M. Mining Clinical Big Data for Drug Safety:
Detecting Inadequate Treatment with a DNA Sequence Alignment Algorithm. AMIA Annu. Symp. Proc. 2018, 2018,
1368–1376.

26. Gotz, D.; Wang, F.; Perer, A. A Methodology for Interactive Mining and Visual Analysis of Clinical Event Patterns Using
Electronic Health Record Data. J. Biomed. Inform. 2014, 48, 148–159.

27. Ayres, J.; Flannick, J.; Gehrke, J.; Yiu, T. Sequential Pattern Mining Using a Bitmap Representation. In Proceedings of
the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Edmonton, AB, Canada,
23 July 2002; pp. 429–435.

28. Simpao, A.F.; Ahumada, L.M.; Desai, B.R.; Bonafide, C.P.; Galvez, J.A.; Rehman, M.A.; Jawad, A.F.; Palma, K.L.;
Shelov, E.D. Optimization of Drug-Drug Interaction Alert Rules in a Pediatric Hospital’s Electronic Health Record
System Using a Visual Analytics Dashboard. J. Am. Med. Inform. Assoc. 2014, 22, 361–369.

29. Dagliati, A.; Sacchi, L.; Tibollo, V.; Cogni, G.; Teliti, M.; Martinez-Millana, A.; Traver, V.; Segagni, D.; Posada, J.;
Ottaviano, M.; et al. A Dashboard-Based System for Supporting Diabetes Care. J. Am. Med. Inf. Assoc. 2018, 25, 538–
547.

30. Sacchi, L.; Capozzi, D.; Bellazzi, R.; Larizza, C. JTSA: An Open Source Framework for Time Series Abstractions.
Comput. Methods Programs Biomed. 2015, 121, 175–188.

31. Dagliati, A.; Sacchi, L.; Zambelli, A.; Tibollo, V.; Pavesi, L.; Holmes, J.H.; Bellazzi, R. Temporal Electronic Phenotyping
by Mining Careflows of Breast Cancer Patients. J. Biomed. Inf. 2017, 66, 136–147.

32. Mane, K.K.; Bizon, C.; Schmitt, C.; Owen, P.; Burchett, B.; Pietrobon, R.; Gersing, K. VisualDecisionLinc: A Visual
Analytics Approach for Comparative Effectiveness-Based Clinical Decision Support in Psychiatry. J. Biomed. Inform.
2012, 45, 101–106.

33. Perer, A.; Wang, F.; Hu, J. Mining and Exploring Care Pathways from Electronic Medical Records with Visual Analytics.
J. Biomed. Inform. 2015, 56, 369–378.

34. Dingen, D.; van’t Veer, M.; Houthuizen, P.; Mestrom, E.H.J.; Korsten, E.H.H.M.; Bouwman, A.R.A.; van Wijk, J.
RegressionExplorer: Interactive Exploration of Logistic Regression Models with Subgroup Analysis. IEEE Trans. Vis.



Comput. Graph. 2019, 25, 246–255.

35. Mica, L.; Niggli, C.; Bak, P.; Yaeli, A.; McClain, M.; Lawrie, C.M.; Pape, H.-C. Development of a Visual Analytics Tool for
Polytrauma Patients: Proof of Concept for a New Assessment Tool Using a Multiple Layer Sankey Diagram in a Single-
Center Database. World J. Surg. 2020, 44, 764–772.

36. Klimov, D.; Shknevsky, A.; Shahar, Y. Exploration of Patterns Predicting Renal Damage in Patients with Diabetes Type
II Using a Visual Temporal Analysis Laboratory. J. Am. Med. Inform. Assoc. 2015, 22, 275–289.

37. Moskovitch, R.; Shahar, Y. Classification of Multivariate Time Series via Temporal Abstraction and Time Intervals
Mining. Knowl. Inf. Syst. 2015, 45, 35–74.

38. Moskovitch, R.; Shahar, Y. Fast Time Intervals Mining Using the Transitivity of Temporal Relations. Knowl. Inf. Syst.
2015, 42, 21–48.

39. Ha, H.; Lee, J.; Han, H.; Bae, S.; Son, S.; Hong, C.; Shin, H.; Lee, K. Dementia Patient Segmentation Using EMR Data
Visualization: A Design Study. Int. J. Environ. Res. Public Health 2019, 16, 3438.

40. Sun, J.; McNaughton, C.D.; Zhang, P.; Perer, A.; Gkoulalas-Divanis, A.; Denny, J.C.; Kirby, J.; Lasko, T.; Saip, A.; Malin,
B.A. Predicting Changes in Hypertension Control Using Electronic Health Records from a Chronic Disease
Management Program. J. Am. Med. Inf. Assoc. 2014, 21, 337–344.

41. Guo, R.; Fujiwara, T.; Li, Y.; Lima, K.M.; Sen, S.; Tran, N.K.; Ma, K.-L. Comparative Visual Analytics for Assessing
Medical Records with Sequence Embedding. Vis. Inform. 2020, 4, 72–85.

42. Gower, J.C.; Warrens, M.J. Similarity, Dissimilarity, and Distance, Measures Of. Wiley StatsRef Stat. Ref. Online 2014,
1–11.

43. Kramer, M.A. Nonlinear Principal Component Analysis Using Autoassociative Neural Networks. AICHE J. 1991, 37,
233–243.

44. Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to Sequence Learning with Neural Networks. Adv. Neural Inf. Process.
Syst. 2014, 27, 3104–3112.

45. Hund, M.; Böhm, D.; Sturm, W.; Sedlmair, M.; Schreck, T.; Ullrich, T.; Keim, D.A.; Majnaric, L.; Holzinger, A. Visual
Analytics for Concept Exploration in Subspaces of Patient Groups. Brain Inf. 2016, 3, 233–247.

46. Müller, E.; Günnemann, S.; Assent, I.; Seidl, T. Evaluating Clustering in Subspace Projections of High Dimensional
Data. Proc. VLDB Endow. 2009, 2, 1270–1281.

47. Cox, M.A.A.; Cox, T.F. Multidimensional Scaling. In Handbook of Data Visualization; Chen, C., Härdle, W., Unwin, A.,
Eds.; Springer Handbooks Comp. Statistics; Springer: Berlin/Heidelberg, Germany, 2008; pp. 315–347. ISBN 978-3-
540-33037-0.

48. Rao, R.; Card, S.K. The Table Lens: Merging Graphical and Symbolic Representations in an Interactive Focus+
Context Visualization for Tabular Information. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, Boston, MA, USA, 24–28 April 1994; pp. 318–322.

49. Huang, C.-W.; Lu, R.; Iqbal, U.; Lin, S.-H.; Nguyen, P.A.A.; Yang, H.-C.; Wang, C.-F.; Li, J.; Ma, K.-L.; Li, Y.-C.J.; et al. A
Richly Interactive Exploratory Data Analysis and Visualization Tool Using Electronic Medical Records. BMC Med.
Inform. Decis. Mak. 2015, 15, 92.

50. Jin, Z.; Cui, S.; Guo, S.; Gotz, D.; Sun, J.; Cao, N. CarePre: An Intelligent Clinical Decision Assistance System. ACM
Trans. Comput. Healthc. 2020, 1, 1–20.

51. Kwon, B.C.; Verma, J.; Perer, A. Peekquence: Visual Analytics for Event Sequence Data. In Proceedings of the ACM
SIGKDD 2016 Workshop on Interactive Data Exploration and Analytics, San Francisco, CA, USA, 14 August 2016;
Volume 1.

52. Baytas, I.M.; Lin, K.; Wang, F.; Jain, A.K.; Zhou, J. PhenoTree: Interactive Visual Analytics for Hierarchical Phenotyping
from Large-Scale Electronic Health Records. IEEE Trans. Multimed. 2016, 18, 2257–2270.

53. Abdullah, S.S.; Rostamzadeh, N.; Sedig, K.; Garg, A.X.; McArthur, E. Visual Analytics for Dimension Reduction and
Cluster Analysis of High Dimensional Electronic Health Records. Informatics 2020, 7, 17.

54. Abdullah, S.S.; Rostamzadeh, N.; Sedig, K.; Garg, A.X.; McArthur, E. Multiple Regression Analysis and Frequent
Itemset Mining of Electronic Medical Records: A Visual Analytics Approach Using VISA_M3R3. Data 2020, 5, 33.

Retrieved from https://encyclopedia.pub/entry/history/show/24899




