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Sperm selection is a clinical need for guided fertilization in men with low-quality semen. In this regard, microfluidics
can provide an enabling platform for the precise manipulation and separation of high-quality sperm cells through
applying various stimuli, including chemical agents, mechanical forces, and thermal gradients. In addition,
microfluidic platforms can help to guide sperms and oocytes for controlled in vitro fertilization or sperm sorting

using both passive and active methods.

microfluidics lab-on-a-chip sperm sorting fertility

| 1. Introduction

Microfluidics and lab-on-a-chip devices play important roles in biology and medicine. Owing to their micron-sized
features, such devices are not only capable of processing samples at low volumes (mL to nL) &I but also allow for
the possibility of sample manipulation in the microchannels. Microfluidic platforms enable various tests in a fast and
low-cost fashion, using miniaturized or portable devices. This is of great importance for applications, such as
single-cell analysis, drug encapsulation, drug and toxicity testing, separation and detection of biomarkers, and cell
sorting [ZRI4IEIEl The |atter has attracted more attention recently due to the microfluidic systems’ high precision
and ease of performing steps, such as culturing, mixing, labeling, attachment to nano- and micro-particles,
immune- or aptamer-based capturing, and separation of cells and stem cells. In addition, microfluidic systems can
also provide platforms for studying the effects of chemical, physical, and mechanical stimuli on the cells, as well as

advanced omics and metabolite analysis BIZIEIERIL0],

Infertility is a major healthcare problem, which affects 8-12% of couples worldwide. An important issue during
conception is the selection of the best gametes. Scientists have been trying for years to enhance the chance of
conception using various approaches 112l Sperm, known as the male gamete and produced through
gametogenesis in mammalians, plays a vital role in transferring the genetic materials of the father to the offspring.
Following fertilization, the proteome of an oocyte cytoplasm is reprogrammed to start cell division and
embryogenesis 1314115 The generation of the mammalian gametes, which are derived from a founder population
of primordial germ cells (PGCs), is determined early during the embryogenesis before they start their unique
development process [6IL7]18]

In vivo, the mammalian spermatozoa undergo an intense process during their migration through the female
reproductive tract 19, The passage of sperm through this tract is therefore regulated to ensure only sperms with

normal morphology and vital motility will succeed 2921 The obstacles in the way of sperms before fertilizing an
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oocyte are the dynamics of sperm transport, entry, and distribution in the vagina, cervix, uterus, uterotubal junction,
sperm storage reservoirs 29, cumulus cells 22231241 and zona pellucida 22281, Successful fertilization, however,
requires high-quality sperm to survive this process 4. This is defined by a number of factors, including the
proportion of viable and motile sperms and their swimming speed, the number of structurally normal and
acrosome-intact sperms, the sperms’ capacitation ability, and the morphology and relative dimensions of their
different components. Discussing these values, however, is out of the scope of this article but could be found in
fertility guidelines [28l291 |n this regard, the evaluation and sorting of sperms are essential to the success of
assisted reproductive technology (ART) BYEL |n other words, it is of utmost importance to perform efficient sorting
to achieve a sufficient population of morphologically normal and motile sperms with uncompromised DNA integrity
and acrosome state [321(331[34]

To mimic the natural sperm selection strategies in ART and to improve its quantity and quality, several advanced
methods are developed 2. These methods are mainly used for sperm selection prior to intra-cytoplasmic
spermatozoa injection (ICSI), which was conventionally performed by a clinical embryologist. Some examples of
these methods include surface charge selection, hyaluronic acid binding, sperm apoptosis assay, sperm
birefringence, intra-cytoplasmic morphologically selected sperm injection (IMSI), motile sperm organelle
morphology examination, DNA/chromatin integrity, hypo-osmotic swelling test (HOST), Raman spectroscopy 29331,
and zona-binding sperm selection 23, This is because the use of microfluidic devices for sperm processing in the

past decade has created new opportunities for the field [2€l.

Microfluidics was adopted for ART purposes in the 2000s 4. Ever since, it has helped to improve ART results by
facilitating different steps, such as embryo culture (28], the trapping and characterization of human oocytes 28139 in
vitro fertilization (IVF) 8], reduction of polyspermic penetration during IVF 49 removal of the zona pellucida from

mammalian embryos (44, removal of cumulus from mammalian zygotes 2, sperm monitoring, and finally, sperm
sorting 431[441[45][46][47][48][49][50][51]

Microfluidic-based sperm sorting is an important cell-sorting category that is emerging very fast. In fertility studies,
as well as infertility treatments, sperm sorting is a crucial step in which viable, motile, and morphologically
appropriate sperm cells should be separated from the semen or washed sperm samples for fertilization EI452],
Implementing these steps in a microfluidic platform, as mentioned earlier, enables the completion of various tests in
a fast and low-cost fashion, with a lower amount of the target fluid needed and using miniaturized or portable
devices.

| 2. Microfluidic Sperm-Sorting Techniques

Microfluidic platforms for sperm sorting rely on either active or passive methods. In active methods, external
stimulators, such as the temperature of chemical gradients or an active fluid flow, perform the sorting, while passive
methods rely on the inherent behavior and movement of sperms in the absence of any external stimuli. As part of
the design considerations, a microfluidic sorter needs to be safe for sperms such that it will not alter their

specifications, such as motility, morphology, DNA integrity, and acrosome. This can be achieved using channels
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and chambers with sperm-friendly size, length, shape, and coatings. These features can be different in each study
according to the specific application and sorting strategy of the designed chip for sperm sorting L2, Similarly, the
employed forces and stimuli, such as acoustic waves, chemicals, heat, and electric charges, should not have any
negative impact on the sperms, their activities, or the medium surrounding them. Such safety concerns should be
taken into consideration also regarding coloring dyes and/or tracking tags used for sperm analysis and imaging
purposes inside the microfluidic devices 235455l On the other hand, as the passive methods are mainly based on
the macroscopic morphology and displacement of the sperms, they provide a safer and less invasive sorting
approach compared to the active methods. However, they are less capable of benefiting from specific sperm

behaviors/characteristics [E8I5718]

2.1. Passive Methods

Passive strategies that were developed for sorting high-quality sperms in microfluidic platforms are summarized in
Table 1.

Table 1. Summary of passive strategies applied in microfluidic chips.

Song Parameter(s) Advantages Disadvantages Significance Ref.
Strategy
. . -Morphology: 5-fold
-Noninvasive P 9y
enhancement
-Reduced .
N . . . -Nuclear Maturity: 3-
Swimming complexity of -Complicated chip
. L fold enhancement
behavior of structural features  fabrication process . o 59]
. o . -DNA integrity: 2—4-
sperms, micro- -Mimics filtering due to complex high-
illar arrays characteristics of aspect-ratio geometr fold enhancement
P y P g y -Throughput: 99%
female S
. -Working time: 10
reproductive tract .
min
VeIogty U] . . -Retrieval efficiency:
gradient -Complicated chip .
. . . . S 44% increased
Geometry  -Hydrodynamic -Simple working design and fabrication ) 60]
. . . -Throughput: 80%
profile of fluid procedure due to complex high- o ]
. . -Optimized flow rate:
micro- aspect-ratio geometry .
. 0.7 pyL/min
confinement
-Hydrodynamic -Mimics th . . .
y_ y . . c _e -Accumulation of a -Highly progressive
profile of fluid variable width of . : .
- . . large population of motile sperms swim
within the channel the junctions . . .
. L sperms in front of the to the fertilized site
-Fluid flow within the female . . 61]
. . stricture leads to -Non-motile and slow
mechanics reproductive tract .
i . reduced efficiency of sperms accumulate
-Shear rate -Simple chip . : . .
. sorting highly motile in front of the
butterfly-shape design and .
S sperms stricture
structure fabrication
Rheotaxis  -Rheotactic -Adding sperm -Complicated chip -Throughput: 100% [62]
behavior of retainer fabrication due to -Residence time: 45
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Song Parameter(s) Advantages Disadvantages Significance Ref.
Strategy
sperms complex high-aspect- min
-Corrals inside ratio geometry
microchannels
-Flow rate
-Optimized delay
-Automated .t”.“e petween semen
injection and
procedure suctioning motile
-Fluid flow -Fast sorting . ) g
. - -Misses some of the sperms: 80 s
R el Ui C otentially high-quality ~ -Highest figures of
behavior of of additional tools, P y high-g y ghes' g 163
sperms due to the motility indexes are
sperms such as a pump . o
_Gravit _simple chi rapid pace mean velocity:
Y e oP 8.94%, motility
_g . percentage: 32.58%,
fabrication .
motile sperm rate:
21.99%
-Simple chip -Throughput: 8.6 x
-Fluid velocity design and 10° sperms/min
inside the channel fabrication -Imprecise collection -Working time: 10
-Designing a -Performance of sorted sperms in min (4]
diffuser-type based on appropriate region -%Motility: 82.24%
channel continuity equation -Motile sperm rate:
in fluid dynamics 53.10%
-Three different
parallel laminar -Mimic viscous .
. -Missing some of
flows environment of . . .
. potentially high-quality
-Variable semen female : L
. sperms due to time -Sperm activity: 65]
flow rate reproductive tract
. i . dependency of 95.7%
- Ability of sperms  -Simple chip . S .
. migration in laminar
to cross design and ;
. . o fluid
streamlines in fabrication
laminar flow
Fluid Flow
-Diffuser-type
channel -Motility pattern of
-Fluid dynamics . . more functional
X - -Complicated chip o .
production -Continuity . L sperms: sinusoidal
. S design and fabrication . [66]
-Enabling cross- equation in fluid . trajectory pattern
. due to complex high- . L
passage of dynamics aspeci-ratio geometr -DNA integrity: 95%
sperms through P g y -DNA fragmentation:
laminar flow 18.4-21.9%
streamline
2.2. Active Methods
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Recent active strategies that have been applied in microfluidic devices to sort the high-quality and progressive

motile sperms are summarized in Table 2.

Table 2. Active strategies that were reported for sperm sorting.

Sorting Parameter(s) Advantages Disadvantages Significance  Ref.
Strategy
-Operation time: 50
min
-Throughput:
60,000
-Surface acoustic -External sorting . sperms/cycle
wave -Precise control of Invasive -Vitality: 50%
. . -Need for additional e [67]
-Sperm size sperm selection equibment -Progressive
-Motility pattern process quip motility: 60%
-DNA integrity:
Acoustic >38%
waves -Swimming
velocity: 64%
-Bulk acoustic -Operation time: 15
-Lower power .
wave min
-Isolates scarce compared to surface . .
“Pressure number of sperms  acoustic wave “Particle size of
distribution through P . polystyrene beads: [68]
. from female DNA -Invasive
the fluid - equal to sperms
. samples -Need for additional . - )
-Addition of equinment -Isolation efficiency:
polystyrene beads auip 85%
-Progesterone
gradient -Noninvasive
concentration -Biomimetic ~Sperms
, -Low efficiency chemotactic ratio: [69]
-Sperms strategy 141
chemoattractant -Flow-free '
behavior
-Improved number
-Uniform gradient of (—?‘ntered.sperms
-Stationary fluidic 4 BRI/
Chemotaxis Y concentration: 20%

-Ach ! and rat
oviductal fluid
gradient
concentration
-Sperms’
chemoattractant
behavior

environment
-Biomimetic
strategy
-Eliminate
rheotactic and
chemokinetic
behavior of
sperms as
selection criteria

-Low efficiency

-Sperm population
with chemotactic

behavior in ACh- [70]
rich environment:
8.5%

-Sperm population
with chemotactic
behavior in
oviductal fluidic
environment: 6.6%
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Song Parameter(s) Advantages Disadvantages Significance  Ref.
Strategy
-ACh gradien . .
Chg ad.e ! -Complicated chip
concentration .
design and i
-Temperature o -Optimized
. . fabrication due to
Chemotaxis  gradient -Flow-free comolex high temperature
and -Sperms’ -Biomimetic e erz:t raticg)] gradient: 0.154 (7]
thermotaxis  chemoattractant strategy P °C/mm from 35 to
geometry R
and " 37°C
-Need of additional
thermoattractant
. structural features
behavior

L ACh: acetylcholine.

| 3. Conclusions and Future Directions

Microfluidic-based devices have shown promising results for sorting spermatozoa using various on-chip
mechanical and chemical stimuli. Applying fluid mechanics features at the microscale to manipulate the efficient
movement of only motile sperms is the core of such approaches. Both stimuli- and non-stimuli- (mechanical) based
methods have their advantages and disadvantages. This is why the stimuli should be selected in a way that would
not harm the sperms. These conditions are well explained in the literature and therefore should be used as a
guideline in selecting the stimuli. Moreover, active-based sorters need a module to apply the stimulant. This makes
the design more complicated due to the complex high-aspect-ratio geometry in the microstructures with micropillars
or microwalls that affect the size, price, and portability of the device. Those devices relying on chemotaxis and
thermotaxis, especially, need reservoirs for the reagents and special training to use them. Passive methods, on the
other hand, are less complicated in this regard but, at the same time, not as efficient as active methods and
therefore have limited potential applications for sperm sorting. Most PoC devices are designed to benefit from a
phone camera as an imaging system to facilitate the design. Therefore, taking all these into account, the final
decision on which technique to use should be determined based on the application and considering the

circumstance.

Considering the above-mentioned promising results, such labs-on-chips are expected to soon become more
commonly used in infertility treatment centers around the world. However, they are expected to evolve in two main
aspects. One is the application of more complex flow manipulation strategies through implementing two or more
sorting systems in order to improve the quality and specificity of the process. This can be achieved, for instance,
through the simultaneous application of acoustic waves and chemical attraction methods. Such chips would require
a precise design to avoid any possible damage to the sperm. However, such modifications might increase the
overall cost of the tool but would allow for improving the sorting efficacy. Exploring new stimulants, such as

electrical stimulants, and the use of nanoparticles are other options.

An ideal such lab-on-a-chip should be capable of efficient sorting, along with real-time monitoring and quality

control of the IVF steps in an automated manner. The need for automation and serial sample manipulation while
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reducing the number of preparation steps and the cost is therefore another aspect to be addressed in the future.

Such improvements can be achieved through combining the sorting, oocyte culturing, and conception steps all in a

single or interconnected chip. On-chip flow manipulations can be controlled using programmable on-chip

micropumps and microvalves 2731 |n addition, artificial intelligence and machine learning 4 have a high

potential to be used in such chips or for analysis purposes.
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