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Conducting polymers are an important class of functional materials that has been widely applied to fabricate

electrochemical biosensors, because of their interesting and tunable chemical, electrical, and structural properties.

Conducting polymers can also be designed through chemical grafting of functional groups, nanostructured, or associated

with other functional materials such as nanoparticles to provide tremendous improvements in sensitivity, selectivity,

stability and reproducibility of the biosensor’s response to a variety of bioanalytes. Such biosensors are expected to play a

growing and significant role in delivering the diagnostic information and therapy monitoring since they have advantages

including their low cost and low detection limit.

Keywords: Conducting Polymers ; Thin Films ; Biomolecules ; Biosensors

1. Description of Conducting Polymers

Conducting polymers have attracted much interest since Shirakawa et al. demonstrated in 1977 that halogen doping of

polyacetylene strongly increased its conductivity  . Thanks to this revolutionary research, Shirakawa, MacDiarmid, and

Heeger were awarded the Nobel Prize in Chemistry in 2000, and opened the way to the development of other conducting

polymers combining properties of organic polymers and electronic properties of semiconductors. Another major

breakthrough in this field was achieved by Diaz et al., who reported the electrodeposition of highly conductive, stable and

processable polypyrrole films . Following these pioneering studies, numerous conducting polymers have been

prepared and used in various applications, such as polyacetylene, polypyrrole (PPy), polyaniline (PANI), polycarbazole,

polythiophene (PTh), poly(3,4-ethylenedioxythiophene) (PEDOT), polyphenylene, poly(phenylene vinylene), and

polyfluorene. All these organic polymers are characterized by alternating single (σ) and double (π) bonds and by the

presence of π electrons delocalized across their entire conjugated structure, thus resulting in polymers which can be

easily oxidized or reduced . This doping, that can be performed upon oxidation (p-doping) or reduction (n-doping),

increases significantly the conductivity of the polymers since this conductivity can vary from less than 10  S/cm in the

neutral state   to more than 10  S/cm in the doped state . The conductivity of the polymers is also dependent on a

number of factors including the nature and concentration of the dopant , temperature , swelling/deswelling

, polymer morphology , pH and applied potential , and polymer chain length . For most heterocyclic polymers,

such as PPy   or PTh , the mechanism of conduction corresponds to a p-doping and starts with the removal of one

electron from the initial monomer leading to the formation of an unstable radical cation (named polaron). Then, a second

electron is removed from another monomer or from an oligomer, leading to the formation of a dication (named bipolaron)

. Under an applied electric field, these polarons and bipolarons serve as charge carriers which are delocalized over the

polymer chains and their movement along polymer chains produces electronic conductivity .

Conducting polymers have become an important class of materials since they combine some useful properties of organic

polymers (such as strength, plasticity, flexibility, toughness or elasticity) with unusual electronic , optical  and

thermoelectric   properties due to the charge mobility along the π electron polymer chains. These unique properties

explain the use of conducting polymers in a wide variety of applications including energy storage with rechargeable

batteries  and supercapacitors , photovoltaics with solar cells , light-emitting diodes ,

electrocatalysis , anti-corrosion  or electrochromic applications such as electrochromic displays  or rearview

mirrors and smart windows . 

2. Preparation of Conducting Polymers

Although it is possible to prepare conducting polymers using gas phase techniques such as CVD   or plasma

polymerization , conducting polymers are mostly prepared via chemical or electrochemical oxidative polymerization

even if it is sometimes possible to use non-oxidative chemical polymerization methods such as Grignard metathesis   or

dehydrobrominative polycondensation . In traditional chemical oxidative polymerization , the synthesis of polymers
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can be done under harsh oxidative conditions with the use of oxidants such as K Cr O , KMnO , K S O , KIO  and FeCl

, or under mild conditions by using, for example, the catalytic action of redox enzymes to produce hydrogen peroxide

that initiates the polymerization , or less frequently at the liquid/air interface . However, the electrochemical oxidative

polymerization is the most frequently used method, mainly because it allows a better control of the polymer deposition .

Electrochemical polymerization is carried out with a classical three-electrode set-up in an electrochemical cell containing a

monomer, a solvent and a supporting salt. The electropolymerization can be achieved either with a potentiodynamic

technique such as cyclic voltammetry where the current response to a linearly cycled potential sweep between two or

more set values is measured, with a potentiostatic technique where a constant potential is applied to initiate the

polymerization, or with a galvanostatic technique where a constant current is applied to initiate polymerization. The

potentiostatic technique allows easy control of the film thickness through Faraday’s law, whereas potentiodynamic

techniques lead to more homogeneous and adherent films on the electrode. Additionally, the galvanostatic technique is

generally considered as the best approach since it allows to follow the growth of the conducting polymer film by

monitoring the potential changes with time which reflects the conductivity.

Conducting polymers have been widely used in the area of bioanalytical and biomedical science  , drug delivery 

, tissue engineering , and cell culture  due to their intrinsic properties and biocompatibility 

. In addition, conducting polymers represent an attractive sensitive material for biosensors due to their electrical

properties that allow to convert biochemical information into electrical signals. Additionally, conducting polymers can be

easily modified by grafting of functional groups which offers the possibility to enhance their abilities to detect and quantify

bioanalytes or to maximize the interactions between the biomolecules and the functionalized polymer. Therefore, after a

short description of the electrochemical techniques used in conducting polymer-based biosensors, a series of examples of

such biosensors will be described to highlight the recent advances in the field of conducting polymer-based

electrochemical biosensors.

3. Immobilization of Biomolecules by Conducting Polymers

Biological sensing element immobilization plays a fundamental role in the performance characteristics of biosensors since

biomolecules must be directly attached to the surface of the biosensor to obtain a good sensitivity and a long operational

life. The most commonly used methods to immobilize biomolecules to polymers are physical adsorption, covalent

attachment and entrapment (Figure 1). The choice of immobilization strategy mainly depends on the type of biological

element. Indeed, antibodies and ssDNA are preferentially immobilized by adsorption or covalent binding onto the surface

of the conducting polymer films to facilitate the access of the analyte to these biorecognition molecules when entrapment

is generally used to immobilize oxidoreductases within the polymer film to facilitate the electron transfer from the

enzyme’s redox center to the analyte solution surrounding the conducting polymer and the rapid redox reaction of

electroactive species such as hydrogen peroxide generated by enzymatic catalysis.

Figure 1. Strategies of immobilization of biomolecules in/on conducting polymers: advantages and drawbacks.

The method of covalent immobilization uses the functional groups of biomolecules (such as –COOH, -NH , or -SH) for

binding with a conducting polymer. Thus, a biomolecule containing amino groups has the capacity to form amide bonds

with a conducting polymer bearing carboxylic groups. For example, Kim et al. have developed a glucose biosensor with a

conducting electrosynthesized poly(terthiophene benzoic acid) bearing benzoic acid groups which allow the

immobilization of glucose oxidase (GOx) through amide bond formation . Similarly, Tuncagil et al. electrosynthesized

the conducting polymer 4-(2,5-di(thiophen-2-yl)-1H-pyrrol-1-yl) benzenamine to immobilize GOx through amide bonds .

Moreover, covalent attachment of biomolecules is frequently achieved by initial synthesis of functionalized monomers with

an amino side group, followed by electrochemical polymerization of these functionalized monomers leading to conducting

polymer films with interfacial attachable side groups that can be covalently bound to biomolecules containing the

corresponding groups. To facilitate the formation of covalent bonds between biomolecules and polymers, crosslinking

agents such as glutaraldehyde   or 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)   are commonly used.
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The covalent immobilization method has the benefit of providing low diffusional resistance, giving strong binding force

between biomolecule and polymer, thus reducing loss of biomolecule. Therefore, these electrodes are more stable in time

even if it may be difficult in some cases to retain the biomolecule activity.

The adsorption method is very simple and only consists in the physical adsorption of the biomolecule on the polymer

surface. Sometimes, the presence of opposite charges into the conducting polymer and the biomolecule facilitates the

immobilization of the biomolecule. Thus, negatively charged glucose oxidase was successfully adsorbed onto positively

charged polyaniline-polyisoprene films at pH 4.5 to provide a material sensitive to glucose concentration changes . This

method has the benefit of providing small perturbation of the biomolecule native structure and function and so generally

leads to very sensitive responses. However, a strong drawback is that direct physical adsorption of biomolecule on a

surface generally leads to poor long-term stability of the sensor because of biomolecule leakage from the surface when

changes in the environment arise (pH, ionic strength) even if the modification of the surface by a polymer film can slow

this leakage .

Entrapment is another method widely used for the immobilization of enzymes , antibodies   or DNA . It involves

the preparation of an electrolyte solution containing both monomer and biomolecule, followed by the electropolymerization

of the whole solution. Thus, a polymer film containing biomolecules is formed at the electrode surface. Entrapment is an

interesting technique since it leads to a strong adhesion between biomolecule and polymer film in a single step.

Additionally, this strategy includes the possibility of controlling the amount of entrapped biomolecules simply by controlling

the thickness of the electrodeposited polymer film. Entrapment generally leads to biosensors with a good sensitivity and a

long lifetime. On the contrary, entrapment can generate problems associated with inaccessibility of the embedded

biomolecule. Additionally, some conducting polymers require very acidic conditions or high oxidation potential during the

electropolymerization process to be prepared but these conditions are not favorable to biomolecules . It is also

important to note that supporting electrolytes are usually used during the electropolymerization process to increase the

conductivity of the monomer solution. Besides, the electrolytes tend to compete with the biomolecules for the polymer

doping sites, and so reduce the amount of biomolecule entrapped which is a problem especially for costly biomolecules. A

solution to this problem is the use of biomolecules as counter-ions during the growth of the conducting polymer film to

allow a more efficient entrapment as previously done with polypyrrole and GOx enzyme . To enhance the incorporation

of enzymes into polymers during their electropolymerization, it is also possible to use sinusoidal voltages as evidenced by

Lupu et al. who developed dopamine biosensors based on tyrosinase entrapped into PEDOT film .
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