Prosopis Plant

Subjects: Biology Contributor: Natália Cruz-Martins

Members of the Prosopis genus are native to America, Africa and Asia, and have long been used in traditional medicine. The Prosopis species most commonly used for medicinal purposes are P. africana, P. alba, P. cineraria, P. farcta, P. glandulosa, P. juliflora, P. nigra, P. ruscifolia and P. spicigera, which are highly effective in asthma, birth/postpartum pains, callouses, conjunctivitis, diabetes, diarrhea, expectorant, fever, flu, lactation, liver infection, malaria, otitis, pains, pediculosis, rheumatism, scabies, skin inflammations, spasm, stomach ache, bladder and pancreas stone removal. Flour, syrup, and beverages from Prosopis pods have also been potentially used for foods and food supplement formulation in many regions of the world. In addition, various in vitro and in vivo studies have revealed interesting antiplasmodial, antipyretic, anti-inflammatory, antimicrobial, anticancer, antidiabetic and wound healing effects. The phytochemical composition of Prosopis plants, namely their content of C-glycosyl flavones (such as schaftoside, isoschaftoside, vicenin II, vitexin and isovitexin) has been increasingly correlated with the observed biological effects.

Keywords: Prosopis ; vitexin ; C-glycosyl flavones ; food preservative ; antiplasmodial ; wound healing potential

1. Introduction

Medicinal plants have been used since the beginning of human civilization to treat various diseases. Different properties have been discovered for each plant, due to many researchers' focus on plants as a natural resource for treating human health ^{[1][2]}. Of the various medicinal plants, species belonging to the *Prosopis* genus have been widely used in folk medicine. The *Prosopis* genus belongs to the Fabaceae or Leguminosae family, and includes about 45 species of spiny trees and shrubs. This genus is found in both subtropical and tropical areas of the world. Briefly, species belonging to the *Prosopis* genus have been traditionally used for the treatment of asthma, birth/postpartum pains, callouses, conjunctivitis, diabetes, diarrhea, expectorant, fever, flu, lactation, liver infection, malaria, otitis, pains, pediculosis, rheumatism, scabies, skin inflammations, spasm, stomach ache, removal of bladder and pancreas stones, among other applications ^{[3][4][5]}. On the other hand, in addition to being being used for centuries for medicinal purposes *Prosopis* plants are also of commercial interest. The paste, gum, and leaves and pods smoke of *Prosopis* plants posses various bioactive properties, such as anticancer, antidiabetic, anti-inflammatory, antimicrobial and antioxidant effects ^{[6][7][8]}. These effects have been increasingly correlated with their content in phytoconstituents, namely flavonoids, tannins, alkaloids, quinones and phenolics. Indeed, *Prosopis* plants have been reported as a rich source of phenolic compounds, being anthocyanins and the flavonoids apigenin, luteolin, quercetin and their derivatives the most abundant ones ^{[9][10][11]}.

Thus, and given the above highlighted aspects, the aim of this review is to provide an in-depth overview of the literature data on the biological activities of the *Prosopis* genus, and to present its potential benefits and applications in both the pharmaceutical and food industries.

2. Prosopis Plants Phytochemical Composition

Epidemiological studies have suggested an inverse association between the consumption of phytochemicals (such as carotenoids and phenolics) and a reduced risk of certain diseases, namely chronic disorders ^[12]. Medicinal plants, and specifically *Prosopis* plants, are rich sources of phytochemicals, among them alkaloids, phenolic compounds, particularly flavonoids (**Figure 1**; **Figure 2**) and phenolic acids (**Figure 3**), glycosides, steroids, tannins and triterpenoids, increasingly recognized as having positive health effects.

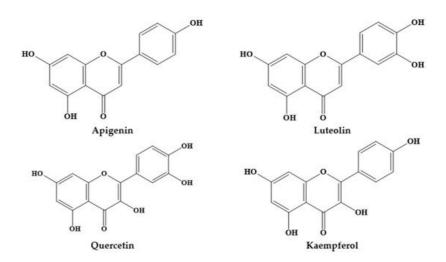


Figure 1. Structures of the main flavonoids in Prosopis plants.

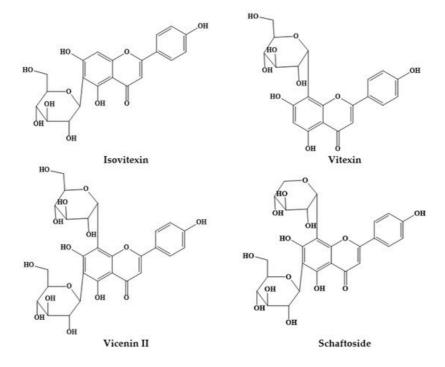


Figure 2. Structures of some C- glycosyl flavones from Prosopis plants.

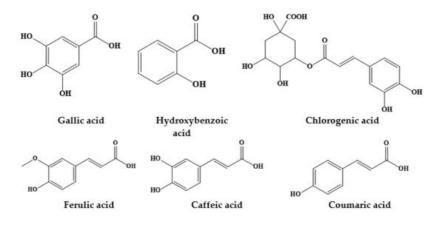


Figure 3. Chemical structures of some phenolic acids from *Prosopis* plants.

Several studies have been conducted to identify and quantify the chemical composition of *Prosopis* plants. The most commonly studied plants and their abundance in phytochemicals are listed in **Table 1**.

Table 1. Identification/quantification of phytochemicals in Prosopis species.

Prosopis Plant and Part	Identified/Quantified Phytochemicals	References		
P. alba flours	Isovitexin (1.12–0.48 μg/mg)			
	Vicenin II (1.07–0.34 μg/mg)			
	Vitexin (0.91–0.47 µg/mg)	[9]		
	Schaftoside (0.42–0.00 μg/mg)			
	Ferulic acid (4.01–0.28 µg/mg)			
	Coumaric acid (3.94–0.33 µg/mg)			
	Q-dihexoside rhamnoside			
	Q-dihexoside			
	Q-methylether dihexoside			
P alba pode	Vitexin	[10]		
<i>P. alba</i> pods	Q-rhamnoside hexoside			
	Isovitexin			
	Q-hexoside			
	K-hexoside			
	Isoschaftoside hexoside (2.43 mg/g)			
	Schaftoside hexoside (3.33 mg/g)			
	Vicenin II/Isomer (0.67 mg/g)			
P. alba flour	Vicenin II/Isomer (2.34 mg/g)	[13]		
	lsoschaftoside (23.67 mg/g)			
	Schaftoside (14.86 mg/g)			
	Vitexin (0.46 mg/g)			
	Isovitexin (2.09 mg/g)			
	Ferulic acid 4-glucuronide (E)			
	Apigetrin, chrysin (E)			
	Chlorogenic acid (E and NE)			
	3-O-feruloylquinic acid (E)			
<i>P. alba</i> exudate gum	p-Coumaroylquinic acid (E)	[11]		
P. alba exudate guin	Valoneic acid dilactone (E)			
	Digallic acid (E)			
	Ferulic acid (NE)			
	Esculetin derivative (NE)			
	7-O-Methylapigenin (NE)			

Prosopis Plant and Part	Identified/Quantified Phytochemicals	References
	Cyanidin rhamnosyl hexoside	
	Cyanidin-3-hexoside	
	Peonidin-3-hexoside	
	Malvidin dihexoside	
	Cyanidin malonoyl hexoside	
	Petunidin-3-hexoside	
	Malvidin rhamnosyl hexoside	
	Malvidin-3-hexoside	
	Vicenin II	
	Q-dihexoside rhamnoside	
P. nigra pods	Isoschaftoside	[10]
	Q-dihexoside	
	Schaftoside	
	Q-hexoside rhamnose	
	K-hexoside rhamnoside	
	Isovitexin	
	Q-hexoside	
	K-hexoside	
	Apigenin hexoside rhamnoside	
	Q methyl ether hexoside rhamnoside	
	K-methyl ether hexoside rhamnoside	
	Vicenin II (0.34 µg/mg)	
	Schaftoside (0.24 µg/mg)	
	Isoschaftoside (0.27 µg/mg)	
P. nigra flour	lsovitexin (0.81 μg/mg)	[14]
	Protocatechuic acid (0.33 µg/mg)	
	Coumaric acid (8.16 µg/mg)	
	Ferulic acid (4.47 µg/mg)	
	Protocatechuic acid (31.65 mg/g) Chlorogenic acid (22.31 mg/g)	
	Caffeic acid (6.02 mg/g)	
	Ferulic acid (9.24 mg/g)	
	Prosogerin A, B, C and D	
	β-sitosterol	
P. cineraria	Hentriacontane	[15][16][17]
	Rutin	
	Gallic acid	
	Patulitrin	
	Luteolin	
	Spicigerin	

rosopis Plant and Part	Identified/Quantified Phytochemicals	References	
	Gallic acid (8–25 mg/100 g)		
	Coumaric acid (335–635 mg/100 g)		
	Catechin (162.5 mg/100g)		
	Gallocatechin (340–648 mg/100 g)		
P. laevigata	Epicatechin gallate (10–71 mg/100 g)	[18]	
	Rutin (222.4–256.1 mg/100 g)		
	Morin (236.5 mg/100 g)		
	Naringenin (20 mg/100 g)		
	Luteolin (13 mg/100 g)		
	4'-O-Methylgallocatechin		
	(+)-catechins		
	(-)-mesquitol		
	Apigenin		
	Luteolin		
	Apigenin-6,8-di-C-glycoside		
	Chrysoeriol 7-O-glucoside	[19][20]	
P. juliflora	Luteolin 7-O-glucoside		
	Kaempferol 3-O-methyl ether		
	Quercitin 3-O-methyl ether		
	Isoharmentin 3-O-glucoside		
	Isoharmentin 3-O-rutinoside		
	Quercitin 3-O-rutinoside		
	Quercitin 3-O-diglycoside		
	Gallic acid (8.203 mg/g)		
	Hydroxybenzoic acid (1.797 mg/g)		
	Pyrocatechol (5.538 mg/g)	[<u>21</u>]	
P. glandulosa	Caffeic acid (0.295 mg/g)		
	Ferulic acid (0.466 mg/g)		
	Quercetin (0.045 mg/g)		

3. Traditional Medicinal Uses of Prosopis Plants

Recent ethnopharmacological studies have shown that *P. africana*, *P. alba*, *P. cineraria*, *P. farcta*, *P. glandulosa*, *P. juliflora*, *P. nigra*, *P. ruscifolia* and *P. spicigera* are amongst the most commonly used *Prosopis* plants in folk medicine treatments. As shown in **Table 2**, different *Prosopis* plants parts are used in diverse regions of the world for the treatment of various diseases. In particular, the positive health effects of *P. cineraria*, *P. juliflora* and *P. africana* have been well-documented ^{[3][4][5][13][14][15][16][17][18][19][20][21][22].}

Table 2. *Prosopis* plants traditionally used in the treatment of various diseases in diverse regions of the world.

Scientific Name	Location	Local Name	Parts Used	Administration	Disease(s) Treated/Bioactive Effects	References
	Sélingué subdistrict, Mali	Guele	Bark trunk	Oral, Bath	Malaria	[19]
P. africana	Guinea-Bissau	Tentera, Buiengué, Bussagan, Coquengue karbon, Késeg, Paucarvão, Pó- de-carbom, Po- di-carvom, Po- di-carvom, Tchelem, Tchelem, Tchelangadje, Tchelangadje, Tchelem, Bal- tencali, Culengô, Culim-ô, Djandjam-ô, Quéssem, quéssem, Djeiha, Ogea	Leaves, bark, roots	Unspecified	Pains, pregnancy (childbirth, breastfeeding, diseases of the newborn), skin inflammations (wounds, burns)	[20]
	Nsukka Local Government Area, South- eastern Nigeria	Ugba	Leaf	Oral	Malaria	[21]
	North-West Nigeria	Kirya, Ko-hi	Roots	Oral	Analgesic, anti- inflammatory	[22]
P. alba	Wichí people of Salta province, Argentina	Jwaayukw, Algarrobo blanco	Resin	Oral	Conjunctivitis, post-abortion pain	[23]
	Bahawalnagar, Punjab, Pakistan	Drucey	Leaves, stem	Oral	Spasm, diabetes, liver infection, diarrhea, removal of bladder and pancreas stone, fever, flu	[5]
				Topical	Rheumatism	
	Thar Desert (Sindh), Pakistan	Gujjo	Fruit	Oral	Tonic for body, leucorrhea	[13]
	South of Kerman, Iran	Kahour	Fruit	Topical	Asthma, skin rash	[14]
P. cineraria	Pakistan	Unspecified	Flower	Oral	Rheumatism	[15]
	Hafizabad district, Punjab, Pakistan	Jhand	Leaf, bark, stem, flower, fruit	Oral, topical, eye drop	Liver tonic, boils and blisters, scorpion bite, pancreatic stone, leucorrhoea, chronic dysentery, cataract	[3]
	Pakistan	Unspecified	Fruit, pods	Unspecified	Asthma	[4]
	Pakistan	Jandi, Kanda, Kandee, Jhand	Leaves, Bark, Flowers, Pods and wood	Oral	Menstrual disorders, contraceptive, prevention of abortion	<u>[16]</u>
P. farcta	Jahrom, Iran	Kourak	Fruit	Oral	Constipation, febrifuge	[24]

Scientific Name	Location	Local Name	Parts Used	Administration	Disease(s) Treated/Bioactive Effects	References
P. glandulosa Torr	Bustamante, Nuevo León, Mexico	Mezquite	Inflorescences	Oral	Stomach pain	[25]
P. juliflora	Thar Desert (Sindh), Pakistan	Devi	Leaves, Gum	Oral	Painkiller, boils opening, eye inflammation, body tonic, muscular pain	[13]
	Hafizabad district, Punjab, Pakistan	Mosquit pod	Whole plant, Flower, Stem, Leaves, Bark	Oral, topical, and as toothbrush	Galactagogue, kidney stones, toothache, breast cancer, asthma, boils	[3]
	Pakistan	Unspecified	Xerophytic shrub	Unspecified	Asthma, cough	[4]
	Mohmand Agency, FATA, Pakistan	Kikrye	Leaves	Oral	Lactation, expectorant	[17]
	Western Madhya Pradesh, India	Reuja	Stem bark	Oral	Asthma	[<u>18]</u>
P. nigra	Wichí people of Salta province, Argentina	Wosochukw, Algarrobo negro	Resin	Oral	Ocular trauma, conjunctivitis	[23]
P. ruscifolia	Wichí people of Salta province, Argentina	Atek, Vinal	Leaves	Oral	Conjunctivitis, stomachache, pimples/rash, scabies, callouses, fever, birth/postpartum pains, diarrhoea, pediculosis, otitis	[23]
P. spicigera	Pakistan	Unspecified	Bark, leaves, flowers	Unspecified	Asthma	[4]

3.1. Prosopis cineraria

P. cineraria is traditionally used as a medicine in different regions of Pakistan, including Bahawalnagar in Punjab Province, the Thar Desert (Sindh) and Hafizabad district in Punjab (**Table 2**). The oral or topical administration of *P. cineraria* leaves, stems, fruits, flowers, barks and pods is used for the treatment of spasms, diabetes, liver infection, diarrhea, bladder and pancreas stones, fever, flu, rheumatism, leucorrhea, boils, blisters, scorpion bite, chronic dysentery, cataract, asthma, sexually-transmitted infections, and gynecological complaints, including menstrual disorders, as contraceptive and to prevent abortion ^{[3][4][5][13][15][16]}. Besides Pakistan, in the South of Kerman in Iran, *P. cineraria* flowers are also topically applied to treat asthma and skin rashes ^[14].

3.2. Prosopis juliflora

P. juliflora is commonly used in Pakistan, and can be either orally consumed or topically applied. Leaves, gum, whole plant, flower, stem and bark of *P. juliflora* are used as a painkiller, body tonic, galactagogue, and expectorant, or to treat boils, eye inflammation, muscular pain, kidney stones, toothache, breast cancer, asthma and cough in Thar Desert (Sindh), Bahawalnagar in Punjab province and Mohmand Agency of Federally Administered Tribal Areas (FATA) ^{[3][4][13]} [17]. In addition to Pakistan, the stem bark of *P. juliflora* is also consumed in western Madhya Pradesh, India for the treatment of asthma [18].

3.3. Prosopis africana

P. africana is commonly known as African mesquite, and is also traditionally used as a medicine. The oral administration of leaves and bark of this plant is used for the treatment of malaria in Sélingué subdistrict in Mali ^[19] and Nsukka Local Government Area in south-eastern Nigeria ^[21].

In addition to malaria, various parts of *P. africana*, including roots, leaves and bark, are also used as analgesic and antiinflammatory in Guinea-Bissau ^[22] and for the treatment of pains, pregnancy-related conditions (childbirth, breastfeeding, newborn diseases), and skin inflammations (i.e., wounds, burns) in north-west of Nigeria ^[20].

3.4. Other Prosopis Plants

The resin of *P. alba* and *P. nigra*, and the leaves of *P. ruscifolia* have also been consumed by the Wichí people of Salta province in Argentina against conjunctivitis, post-abortion pain, ocular trauma, stomachache, pimples or rash, scabies, callouses, fever, birth or postpartum pains, diarrhea, pediculosis and otitisSuárez ^[23].

A study carried out in South America (Bustamante, Nuevo León, Mexico), also pointed out that the ingestion of *P. glandulosa* inflorescences may be useful to relief stomach pain ^[25]. In addition to the above, in Jahrom, Iran, *P. farcta* fruits have been consumed to prevent constipation and to reduce fever ^[24], whereas *P. spicigera* bark, leaves and flowers are used for the treatment of asthma in Pakistan ^[4].

References

- Sharifi-Rad, J.; Salehi, B.; Varoni, E.M.; Sharopov, F.; Yousaf, Z.; Ayatollahi, S.A.; Kobarfard, F.; Sharifi-Rad, M.; Afdjei, M.H.; Sharifi-Rad, M.; et al. Plants of the Melaleuca genus as antimicrobial agents: From farm to pharmacy. Phytother. Res. 2017.
- Sharifi-Rad, M.; Roberts, T.H.; Matthews, K.R.; Bezerra, C.F.; Morais-Braga, M.F.B.; Coutinho, H.D.M.; Sharopov, F.; S alehi, B.; Yousaf, Z.; Sharifi-Rad, M.; et al. Ethnobotany of the genus Taraxacum—Phytochemicals and antimicrobial ac tivity. Phytother. Res. 2018, 32, 2131–2145.
- Umair, M.; Altaf, M.; Abbasi, A.M. An ethnobotanical survey of indigenous medicinal plants in Hafizabad district, Punjab-Pakistan. PLoS ONE 2017, 12, e0177912.
- 4. Younis, W.; Asif, H.; Sharif, A.; Riaz, H.; Bukhari, I.A.; Assiri, A.M. Traditional medicinal plants used for respiratory disor ders in Pakistan: A review of the ethno-medicinal and pharmacological evidence. Chin. Med. 2018, 13, 48.
- 5. Ahmed, N.; Mahmood, A.; Ashraf, A.; Bano, A.; Tahir, S.S.; Mahmood, A. Ethnopharmacological relevance of indigenou s medicinal plants from district Bahawalnagar, Punjab, Pakistan. J. Ethnopharmacol. 2015, 175, 109–123.
- Abarca, N.A.; Campos, M.G.; Reyes, J.A.A.; Jimenez, N.N.; Corral, J.H.; Valdez, L.G.S. Antioxidant activity of polyphen olic extract of monofloral honeybee-collected pollen from mesquite (Prosopis juliflora, Leguminosae). J. Food Compos. Anal. 2007, 20, 119–124.
- Cattaneo, F.; Sayago, J.E.; Alberto, M.R.; Zampini, I.C.; Ordoñez, R.M.; Chamorro, V.; Pazos, A.; Isla, M.I. Anti-inflamm atory and antioxidant activities, functional properties and mutagenicity studies of protein and protein hydrolysate obtain ed from Prosopis alba seed flour. Food Chem. 2014, 161, 391–399.
- 8. Jahromi, M.A.F.; Etemadfard, H.; Zebarjad, Z. Antimicrobial and antioxidant characteristics of volatile components and ethanolic fruit extract of Prosopis farcta (Bank & Soland.). Trends Pharm. Sci. 2018, 4, 177–186.
- Rodriguez, I.F.; Pérez, M.J.; Cattaneo, F.; Zampini, I.C.; Cuello, A.S.; Mercado, M.I.; Ponessa, G.; Isla, M.I. Morphologi cal, histological, chemical and functional characterization of Prosopis alba flours of different particle sizes. Food Chem. 2019, 274, 583–591.
- Perez, M.J.; Cuello, A.S.; Zampinil, C.; Ordonez, R.M.; Alberto, M.R.; Quispe, C.; Schmeda-Hirschmann, G.; Isla, M.I. Polyphenolic compounds and anthocyanin content of Prosopis nigra and Prosopis albapods flour and their antioxidant and anti-inflammatory capacities. Food Res. Int. 2014, 64, 762–771.
- 11. Vasile, F.E.; Romero, A.M.; Judis, M.A.; Mattalloni, M.; Virgolini, M.B.; Mazzobre, M.F. Phenolics composition, antioxida nt properties and toxicological assessment of Prosopis alba exudate gum. Food Chem. 2019.
- 12. Afrin, S.; Gasparrini, M.; Forbes-Hernandez, T.Y.; Reboredo-Rodriguez, P.; Mezzetti, B.; Varela-Lopez, A.; Giampieri, F.; Battino, M. Promising health benefits of the strawberry: A focus on clinical studies. J. Agric. Food Chem. 2016, 64, 4435 –4449.
- Yaseen, G.; Ahmad, M.; Sultana, S.; Alharrasi, A.S.; Hussain, J.; Zafar, M. Ethnobotany of medicinal plants in the Thar Desert (Sindh) of Pakistan. J. Ethnopharmacol. 2015, 163, 43–59.
- 14. Sadat-Hosseini, M.; Farajpour, M.; Boroomand, N.; Solaimani-Sardou, F. Ethnopharmacological studies of indigenous medicinal plants in the south of Kerman, Iran. J. Ethnopharmacol. 2017, 199, 194–204.
- 15. Suroowan, S.; Javeed, F.; Ahmad, M.; Zafar, M.; Noor, M.J.; Kayani, S.; Javed, A.; Mahomoodally, M.F. Ethnoveterinary health management practices using medicinal plants in South Asia—A review. Vet. Res. Commun. 2017, 41, 147–168.

- Tariq, A.; Adnan, M.; Iqbal, A.; Sadia, S.; Fan, Y.; Nazar, A.; Mussarat, S.; Ahmad, M.; Olatunji, O.A.; Begum, S. Ethnop harmacology and toxicology of Pakistani medicinal plants used to treat gynecological complaints and sexually transmitt ed infections. S. Afr. J. Bot. 2018, 114, 132–149.
- 17. Aziz, M.A.; Adnan, M.; Khan, A.H.; Shahat, A.A.; Al-Said, M.S.; Ullah, R. Traditional uses of medicinal plants practiced b y the indigenous communities at Mohmand Agency, FATA, Pakistan. J. Ethnobiol. Ethnomed. 2018, 14, 2.
- 18. Wagh, V.V.; Jain, A.K. Status of ethnobotanical invasive plants in western Madhya Pradesh, India. S. Afr. J. Bot. 2018, 114, 171–180.
- 19. Diarra, N.; van't Klooster, C.; Togola, A.; Diallo, D.; Willcox, M.; de Jong, J. Ethnobotanical study of plants used against malaria in Sélingué subdistrict, Mali. J. Ethnopharmacol. 2015, 166, 352–360.
- 20. Catarino, L.; Havik, P.J.; Romeiras, M.M. Medicinal plants of Guinea-Bissau: Therapeutic applications, ethnic diversity and knowledge transfer. J. Ethnopharmacol. 2016, 183, 71–94.
- 21. Odoh, U.E.; Uzor, P.F.; Eze, C.L.; Akunne, T.C.; Onyegbulam, C.M.; Osadebe, P.O. Medicinal plants used by the people of Nsukka Local Government Area, south-eastern Nigeria for the treatment of malaria: An ethnobotanical survey. J. Eth nopharmacol. 2018, 218, 1–15.
- 22. Salihu, T.; Olukunle, J.O.; Adenubi, O.T.; Mbaoji, C.; Zarma, M.H. Ethnomedicinal plant species commonly used to man age arthritis in North-West Nigeria. S. Afr. J. Bot. 2018, 118, 33–43.
- 23. Suárez, M.E. Medicines in the forest: Ethnobotany of wild medicinal plants in the pharmacopeia of the Wichí people of Salta province (Argentina). J. Ethnopharmacol. 2019, 231, 525–544.
- 24. Nasab, F.K.; Esmailpour, M. Ethno-medicinal survey on weed plants in agro-ecosystems: A case study in Jahrom, Iran. Environ. Dev. Sustain. 2018, 21, 2145–2164.
- Estrada-Castillón, E.; Villarreal-Quintanilla, J.Á.; Rodríguez-Salinas, M.M.; Encinas-Domínguez, J.A.; González-Rodríg uez, H.; Figueroa, G.R.; Arévalo, J.R. Ethnobotanical survey of useful species in Bustamante, Nuevo León, Mexico. Hu m. Ecol. 2018, 46, 117–132.

Retrieved from https://encyclopedia.pub/entry/history/show/29032