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Plant polyphenols are the main category of natural active substances, and are distributed widely in vegetables, fruits, and

plant-based processed foods. Polyphenols have a beneficial performance in preventing diseases and maintaining body

health.
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1. Classification, Source and Function of Polyphenols

More than 8000 phenolic substances are commonly distributed in fruits, vegetables, tea, coffee, cocoa, beans, and grains

(Table 1) . Polyphenols have complex structures and can be divided into phenolic acids, lignans, stilbene, tannins, and

flavonoids (e.g., isoflavones and anthocyanins). Polyphenols derived from various sources have many beneficial and

specific therapeutic properties (Table 1). Phenolic acid has an extensive physiological activity, including anti-oxidation,

scavenging free radicals, anti-ultraviolet radiation, and antibacterial and antiviral effects. Stilbene resveratrol has a

preventive effect on atherosclerosis and cancer . Stilbene and flavonoids can be used to prevent and treat

cardiovascular and cerebrovascular diseases . As the most common phytoestrogens, lignans are famous for its high

anti-oxidant activity and inhibiting lipid peroxidation . Lignans can also bind to estrogen receptors and interfere with

cancer-promoting effects; therefore, it has a preventive effect on breast and colon cancer. As a kind of polyphenols, tannin

can exert various activities, such as anti-oxidative, anti-microbial, anti-cancer, anti-hypertensive, and anti-inflammatory

effects . However, complexes can be formed by polyphenols with starch, protein, and enzymes; therefore, they are

considered as anti-nutrients. Due to their carcinogenic and anti-nutritional effects, it is harmful for human and animal to

have too many tannins .

Table 1. Classification, sources, and functions of polyphenols.

Polyphenols Subclass Sources Function Ref.

Phenolic
acids  Coffee, berries, kiwi,

apple, cherry
Anti-inflammatory, anti-oxidant, antibacterial, antiviral,

antiparasitic

Stilbenes  Grapes, wine Anti-inflammatory, anti-oxidant, heart protection, anti-
cancer, anti-obesity

Lignans  Linseed, sesame, wheat Anti-tumor, scavenging free radicals, anti-oxidant

Flavonoids     

 Isoflavones Soy, miso Estrogenic activity, anti-inflammatory, anti-obesity,
anti-diabetic, anti-oxidant, cholesterol lowering

 Flavones Parsley, celery,
capsicum pepper

Anti-inflammatory, anti-oxidant, regulating glucose and
lipid metabolism, anti-virus, anti-bacterial, anti-

parasitic

 Flavanones Grapefruit, lemon,
oranges

Anti-inflammatory, anti-oxidant, regulating glucose and
lipid metabolism, preventing liver steatosis, anti-

bacterial, anti-viral, anti-parasitic, anti-fungal

 Flavonols Berries, onion, broccoli,
leek

Anti-inflammatory, anti-oxidant, anti-virus, anti-
bacterial
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Polyphenols Subclass Sources Function Ref.

 Flavanols
Grapes, cocoa, wine,
apricots, green tea,

beans

Anti-inflammatory, anti-oxidant, antibacterial, antiviral,
antiparasitic, anticancer

 Anthocyanins
Berries, black grapes,
aubergine, red wine,

rhubarb

Anti-inflammatory, anti-bacterial, anti-oxidant, anti-
diabetic, anti-cancer, nerve protection, anti-allergic

Tannins Condensed
tannins

Cocoa, chocolate,
apples, grapes

Anti-oxidant, eliminating free radicals, enhancing
immunity, preventing cardiovascular and

cerebrovascular diseases, improving hypoxia

 Hydrolyzable
tannins Mango, pomegranate Anti-oxidant, anticancer, phytoestrogens activity

Due to their extensive biological activities, plant polyphenols have become a study hotspot in the field of human nutrition

and health. Similarly, polyphenols also have various positive effects on livestock and poultry. Plant polyphenol extracts

and polyphenol monomer compounds can effectively improve animal intestinal microenvironment with various functional

activities, such as immune regulation, bacteriostasis, anti-oxidation, and microbiota regulation .

2. Foodomics Applied in the Study of Polyphenols

As shown in Figure 1, foodomics is a collection of genomics, transcriptomics, proteomics, and metabolomics, and can be

used to study polyphenols from multiple angles. The data obtained from various omics will be integrated to explore the

molecular mechanism and novel pathways of plant polyphenols to predict and treat diseases of human and animals.

Figure 1. The strategy of foodomics to study the bioactivities of polyphenols. 2-DE: two-dimensional gel electrophoresis;

CE-MS: capillary electrophoresis mass spectrometry; EST: expression sequence tags technology; GC: gas

chromatography; LC: liquid chromatograph; MPSS: massively parallel signature sequencing; MALDI-TOF/TOF: matrix-

assisted laser desorption ionization time-of-flight/time-of-flight; MS: mass spectrometry; NMR: nuclear magnetic

resonance; RNA-seq: RNA sequencing; SAGE: serial analysis of gene expression; UPLC-Q-TOF: ultra-performance liquid

chromatography to quadrupole time-of-flight; WES: whole exome sequencing; WGS: whole genome sequencing.

3. Microbiomics Involved in the Bioactivity of Polyphenols

3.1. Regulation of Polyphenols on Gut Microbiota

Microbiome refers to all microorganisms and genetic information in a specific environment and has beneficial effects in

nutrition, metabolism, and immunity . Gut microbiota mainly consists

of Actinobacteria, Bacteroidetes, Firmicutes, Fusobacteria, Proteobacteria, and Verrucomicrobia. Among

them, Firmicutes and Bacteroides are the dominant microbiota . Like prebiotics, the polyphenols in diet have received

widespread attention for their functional regulatory effects on gut microorganisms, as shown in Figure 2. Polyphenols can

inhibit harmful bacteria proliferation (e.g., Escherichia coli and Salmonella), while promoting the growth of probiotics

(e.g., Bifidobacterium and Lactobacillus).
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Figure 2. The influence of the interaction between plant polyphenols and gut microbiota on metabolic diseases. “+” means

“enhance”; “−” means “weaken”.

Intestinal disorders can be inhibited by polyphenols via richening the abundance of beneficial bacteria and microbial

diversity. Resveratrol has a promoting effect on Lactobacillus and Bifidobacterium, which can exert anti-inflammatory

effects through reducing pro-inflammatory cytokines and increasing anti-inflammatory cytokines . Alpha diversity of

gut microbiota was changed, and relative abundances of Bifidobacterium, Feacalibacterium, Eubacterium,

and Coprococcus were increased by the intake of polyphenols from green tea . The abundance

of Bifidobacteria and Lactobacillus in the gut were increased by the intake of blueberries . In addition, it has been

confirmed that inflammatory bowel disease (IBD) is influenced by multiple factors, including the host, microorganisms, and

the environment, and the occurrence of IBD is related to gut microbes . In our lab, we found that polyphenol taxifolin

changed the composition of colonic microbial community by 16S rDNA sequencing. The change

in Bacteroides, Clostridium saccharogumia, Clostridium ramosum, Sphingobacterium multivorum,

and Bacteroidetes/Firmicutes ratio caused by dextran sulfate sodium was restored by taxifolin to relieve mice colitis . In

conclusion, plant polyphenols can promote beneficial bacteria in the process of regulating intestinal microbes. Once the

polyphenols enter the intestinal tract, they will activate the gut microbiota and regulate gut microecology. Conversely,

polyphenols can also be used by gut microbiota to produce bioactive molecules (e.g., phenolic acids), which may be the

key biologically active effector , subsequently promoting the health of human and animals.

3.2. Combination of Microbiome and Metabolomics in Polyphenol Study

Currently, microbiome technologies mainly contain microbial metagenomics, metametabolomics, macrotranscriptomics,

and macroproteomics, allowing us to analyze the microbiome at different levels (e.g., DNA, RNA, protein, and

metabolites). At present, numbers of studies on polyphenols mainly focus on metagenomics and metametabolomics. In

contrast, their combination to explore the metabolic process of polyphenols is still lacking. The combination of

metabolomics and microbiome is a novel approach to explore the specific mechanism of polyphenols. Gut microbiota

plays a critical role in health and nutritional status of human and animals . In general, the method of the combination of

microbiome and metabolomics is shown in Figure 3. By sequencing the metagenomics of gut microbiota, the

corresponding microorganisms can be identified and metabolites can be analyzed using metabolomics technology to

discover a novel pathway. In a previous study, primary bile acids were modified into secondary bile acids by clostridium

species using 16S amplicon sequencing and metabolomics . It has been verified that polyphenols have various

biological activities with a positive influences on gut microbes . Therefore, the combination of metabolomics and

microbiome in the exploration of polyphenols is a trend in the future.
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Figure 3. Combining microbiome and metabolomics to investigate the bioactivity of plant polyphenols.

The combination of microbiome and metabolomics has been used to study the effects of plant polyphenols on

cardiovascular diseases. Through the metabolomics and genomics analysis of microorganisms in serum, urine, and feces,

the risk of cardiovascular disease can be reduced by pomegranate polyphenols . The influence of green tea

polyphenols on gut microbiota and micronutrient metabolism was analyzed using metagenomics and metabolomics, and

the metabolites of tricarboxylic acid and urea cycle were analyzed using metabolomics and 16S rRNA sequencing,

showing that energy conversion was enhanced by green tea polyphenols via promoting the metabolism of gut microbiota

in rat . Moreover, the diversity and overall structure of gut microbiota were changed by polyphenols using 16S rRNA

sequencing, indicating that polyphenols have an anti-cancer effect. Therefore, it has been speculated that polyphenols

can regulate tumor growth by controlling certain bacteria and subsequently changing the cellular components and

metabolites . In conclusion, the positive effects of polyphenols on human gut health can be clarified through a

microbiome approach. The underlying mechanisms of polyphenols on gut microbiota and metabolites using microbiomics,

metabolomics, and multiple omics need to be further explored.
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