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Histopathology refers to the examination by a pathologist of biopsy samples. Histopathology images are captured by a

microscope to locate, examine, and classify many diseases, such as different cancer types. They provide a detailed view

of different types of diseases and their tissue status. These images are an essential resource with which to define

biological compositions or analyze cell and tissue structures. This imaging modality is very important for diagnostic

applications.

The analysis of histopathology images is a prolific and relevant research area supporting disease diagnosis. In this paper,

the challenges of histopathology image analysis are evaluated. An extensive review of conventional and deep learning

techniques that have been applied in histological image analyses is presented. This entry summarizes many current

datasets and highlights important challenges and constraints with recent deep learning techniques, alongside possible

future research avenues. Despite the progress made in this research area so far, it is still a significant area of open

research because of the variety of imaging techniques and disease-specific characteristics. 
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1. Introduction 

Medical Images are a fundamental section of each patient's digital health file. Such images are produced by individual

radiologists who are restricted by speed, professional weaknesses, or a lack of practice. It requires decades and

reasonable financial resources to train a radiologist. Additionally, some medical care methods outsource radiology

confirmations to less economically developed nations, such as India, via teleradiology. A late or incorrect analysis can

cause injury to the patient. Thus, it would be beneficial for medical imaging (MI) analyses to be performed by automatic,

precise, and effective machine learning (ML) algorithms. MI analysis is a significant research area for ML, in part because

the information is somewhat organized and labeled; i.e., this is probable if the patient was examined in a region with good

ML systems . That is significant for two reasons. First, with regards to real patient metrics, MI analysis is a litmus check

regarding whether ML techniques would, in actuality, improve individual outcomes and survival. Second, it provides a

testbed for human–ML interactions—i.e., how responsive is an individual likely to be to the health changing possibilities

being put forward or aided by a nonhuman actor . In recent years, ML has shown significant advances. For a wide

variety of applications, including image recognition, medical diagnosis, defect identification and construction health

assessments, the potential of this field has also expanded. These new developments in ML are due to many factors, like

the creation of self-learning mathematical models that enable computer techniques to execute particular (human-like)

tasks based solely on learned patterns, in addition to the increase in the computer power that supports these models'

analytical capabilities .

There are many imaging types, and their use is becoming more widespread. Types of MI include ultrasound, X-ray,

magnetic resonance imaging (MRI), retinal scans, histopathology images (HI), computed tomography (CT), positron

emission tomography (PET), and dermoscopy images. Some examples of MIs are shown in Figure 1. Many of these types

analyze numerous organs, such as CT and MRI, whereas others are organ-specific, such as retinal and dermoscopy

images . The quantity of produced information from each analysis stage differs depending on nature of the MI and the

tested organs. HIs are useful for biological studies and to make medical decisions. In addition, they are generally utilized

to provide "ground truths" (GTs) for other modalities of MI, such as MRI. A histology slide is a digital record a few

megabytes in size, while a magnetic resonance image can be several hundred megabytes. This has a technical effect on

how the data is preprocessed and on the architecture design of the algorithm in terms of processor and storage limitations

.
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Figure 1. Examples of some medical image types: (a) MRI scan of the left side of a brain; (b) an axial CT brain scan; (c)

an axial CT lung scan; (d) chest x-ray; (e) a histology slide with high-grade glioma.

Pathology analyses are traditionally executed by an individual pathologist observing a dyed specimen on a glass slide

with a microscope. Lately, efforts have been made to record the whole slide with a reader and save it as an electronic

picture, called a whole slide image (WSI) .

Digitizing pathology is just one recent development that produces high levels of visible information designed for

automated diagnoses. It enables us to see and understand pathologic cell and muscle samples in good quality images

with assistance from personal computer tools. It also brings about the possibility of applying image analysis techniques.

Such techniques would assist pathologists and support their explanations, such as hosting and grading. Various

classification and segmentation methods for HI have already been discussed in this review. We present and compare

conventional techniques and deep learning (DL) methods to choose the most appropriate method for histopathology

issues .

Natural microscopic architecture data and their features at nuclei, tissue, and different organ levels could be key to illness

expansion and infection treatment analysis. Additionally, to examine and diagnose the histological image of biologic

microscopic, pathologists have identified the morphological features of tissue that show the current presence of infection,

such as cancer .

Some characteristics of disease, such as tumor-infiltrating lymphocytes, might be deduced from HI alone. Additionally, HI

analysis, which is called the "gold standard" in many disease diagnoses, is nearly included in all kinds of cancer detection

and treatment procedures. HI needs specific analysis with respect to organs and a specific task for the visualization of

various tissue components under a microscope. With one or more stains, the sections are dyed. These are staining

attempts to uncover cellular elements. The contrast is shown by using counterstains .

Efficient ML algorithms are presented and used in HI analysis to help pathologists to acquire a quick, stable, and

quantified examination result for a more accurate diagnosis. Many different traditional and deep learning methods support

the pathologists in accessing more tissues to determine the internal relationship between the visual images and the

specific illness. Additionally, since the ML techniques are generally semi- or fully automated, they are effective,

encouraging technical feasibility for histopathology examination within the recent big data age .

On the other hand, most of the HI analysis stages are based on mathematical basics. Mathematical operations and

functions are applied to all analysis stages, starting from the preprocessing to diagnosis stages to provide an intensive

analysis for HIs. Figure 2 illustrates the main phases of a common histopathological images pipeline based on

conventional ML techniques. First, HIs are supplied to the system as a 2D array for grayscale images or a 3D array for

colored images. Then, the preprocessing stage applies some linear algebra operations on the image array to enhance the

image quality. This stage helps to distinguish significant structures from others in the processed images. Third, the

segmentation stage is applied to differentiate the cells from other background objects by applying some state-of-the-art

mathematical algorithms, such as thresholding, level set, watershed transform, and intensity and texture homogeneity

transforms. Fourth, the feature extraction stage extracts the most significant features in the segmented images instead of

processing each pixel, which reduces the system's computation complexity. Besides, most handcrafted features are

based on applying some mathematical techniques to detect the changes in the intensity, color, or texture of the pixels.

Common derivative techniques are utilized to detect these changes by applying first or second derivatives to pixel values.
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Finally, the diagnosis stage is applied to classify or cluster the processed images, depending on the extracted features.

The classification and clustering techniques are based on applying some mathematical operations that distinguish the

processed images based on the extracted features.

Figure 2. An overview of the HI analysis pipeline.

2. Histopathological Image Overview

HI has natural and abnormal biological structures, as well as morphological and architectural features defined by

pathologists, based on their knowledge. Even given the tissue area, some structures are small, and related patterns

typically have high visual appearance variability. In biological systems and anatomy, most visual variability is inherent .

Next to obtaining electronic HI via the biopsy test, the guide analysis of images contributes to variability in diagnosis and

treatment. To get over this issue, CAD techniques are applied to provide an objective examination of disease. The

fundamental steps necessary for applying the CAD examination system appear in Figure 2. This includes electronic image

handling methods, such as segmentation, feature extraction, and classification .

HI analysis contains the computations executed at various zoom scales (×2, ×4.5, ×10, ×20, and ×40) for multivariate

mathematical examination, analysis, and classification. It could be achieved at a lower zoom for tissue stage examination.

Demir et al.  presented tissue stage and cell stage examination techniques for cancer diagnosis. They examined HI by

applying preprocessing, feature extraction, and classification strategies. The new improvement in electronic pathology

requirements for the growth of quantitative and automatic digital image examination methods aids pathologists in

understanding the number of digitized HIs .

3. Conventional Machine Learning Methods

CAD systems played an essential role and have become an important research topic in HI and diagnostics. Various image

processing techniques were applied to examine the disease's diagnosis and prognosis for these HIs. Various image

processing and computer vision (CV) techniques have been implemented for gland and nuclei segmentation, cell kind

recognition, or classification to extract quantitative measurements of disease characteristics from HIs and automatically

assess whether or not a disease exists inside examined samples. It could help to determine the degree of seriousness of

the disease, whether present in the sample. Conventional ML methods often contain a few steps to manage HI, as shown

in Figure 3.
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Figure 3. The conventional machine learning methods for HI.

4. Deep Learning Methods

Recently, DL techniques have often been studied in the effective form of ML methods. Within the last few years, DL

techniques outperformed traditional ML methods in varied fields, such as CV, natural language processing (NLP),

biomedical fields, and automated analysis for HI . DL methods in the CV are derived from the structure levels for

nonlinear transformations on natural input pixels. This structure formed significantly abstract representations, which could

be realized in a hierarchical style . A typical instance of a commonly applied structure is the CNN .

Multiple criteria can be considered when using the DL techniques to deal with histopathology, since accomplishing the

method is partly due to the task-species setting. Among the principal features of HI is that appropriate styles be

determined by the magnification stage. The key factors are the size of the patch given to the network, the localization of

parts in the image where appropriate histopathology originals can be found, and the homogeneity of staining for WSI .

The network structure represents an important position, while many studies keep predefined system structures, as

illustrated in Figure 4.

Figure 4. The typical deep learning steps for HI analysis.

The majority of the DL techniques for localizing, classifying, and segmenting HI are somewhat recent. Deep neural

techniques are stated in the new literature of HI analysis, such as . For example, Irshad et al.  were the first

mentioned in a review. The critical patterns from an exhaustive analysis of different nuclei identification, segmentation,

and classification approaches utilized in HI, specifically in H&E staining protocols, were described and discussed in this

review. Ciresan et al.  presented one of the first significant efforts to utilize the deep method in mitosis recognition for HI

analysis. Arevalo et al.  presented a hybrid illustration method to the basal cell of carcinoma areas and utilized a

topographic unsupervised technique and a case of characteristic illustrations. They increased the classifier's efficiency by

6% regarding traditional structure-based discrete cosine transform (DCT). Nayak et al.  presented an alternative

method for the unsupervised Boltzmann technique for understanding image signatures. They classified images of the

cancer genome atlas (TCGA) for apparent cell-kidney cancer and glioblastoma variform. The last stage was created

utilizing the classifier of multi-class support vector machines (SVM) techniques.
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Approaches that rely on Generative Adversarial Networks (GANs) are likely to minimize the need for large volumes of

manual notations. Not only have recent innovations enhanced initiatives but so have new technologies. Now, unattended

techniques may carry out various tasks for which supervised methods are indispensable. The latest state-of-the-art

advances in histopathological images of GANs were summarized in . The overview of the discussed studies is

summarized in Table 1.

Table 1. Overview of supervised and unsupervised learning models based on DL techniques.

Study Organ Staining Potential Usage Method

Supervised Learning

Litjens et al. different

tissue
H&E

Prostate and breast

carcinoma

detection

Convolutional Neural Network based

on pixel classifier

Nagpal et al. Prostate H&E
Anticipating

Gleason indicator

CNN based on sectional Gleason

model classifier + k-nearst neighbors

(KNN) based on Gleason grade

anticipation

Zhao et al. Breast H&E

Metastasis

Detection +

classification

Characteristic pyramid collecting

based on the fully convolutional

network (FCN) system with the

synergistic training technique

Xing et al. 
different

tissue

H&E,

Immunohistochemistry

(IHC)

Segmentation of

nuclei

CNN + selection based on sparse form

Pattern

Gu et al. Breast H&E Tumor detection

U-Net based on multiple resolution

model with multiple encoders and a

singular decoder  system

Tellez et al. Breast H&E Detection of Mitosis

Train of Convolutional Network

applying H&E registered to PHH3

slides as a reference

Wei et al. Lung H&E

Histological

subtypes of lung

gland classifier

ResNet-18 on the basis of  patch

classification

Song et al. Cervix
Papanicolaou (Pap),

H&E
Cells Segmentation Multiple level CNN system

Agarwalla et

al. 
Breast H&E

Segmentation of

tumor

CNN and 2D- Long short-term memory

(LSTM) to representing training and

context collecting

Ding et al. Colon H&E
Glands

segmentation

Multiple level FCN network with a high-

resolution section to avoid the lost in

highest pooling layers
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Bejnordi et al. Breast H&E
Invasive Carcinoma

detection

Multiple level CNN which first

determines tumor-associated stromal

modifications and more categorize into

normal/benign versus invasive

carcinoma

Seth et al. Breast H&E

Ductal

carcinoma in-situ

(DCIS)

segmentation

Compared UNets learned in many

resolutions

Unsupervised Learning

Xu et al. Breast H&E
Segmentation of

nuclei
Stacked sparse autoencoders

Bulten and

Litjens 
Prostate H&E

Tumor

classification

Convolutional adversarial

Autoencoders

Hou et al. Breast H&E
Segmentation and

detection of nuclei
Sparse autoencoder

Sari and

Gunduz-

Demir 

Colon H&E
Feature extraction

and classification
Restricted Boltzmann + clustering

Gadermayr et

al. 
Kidney Stain agnostic

Object of interest

segmentation in

WSIs

CycleGAN + UNet segmentation

Gadermayr et

al. 
Kidney

Periodic acid–

Schiff (PAS), H&E

Glomeruli

segmentation
CycleGAN

5. Datasets

The size of the datasets given to researchers for training and testing their methods has dramatically increased in the latest

challenges. There is a set of public databases in the electronic pathology subject that include manual annotations for HI,

as listed in Table 2 and Table 3 . They might help the examination objectively. Slide issue (stain) and image issue

(image resolution, zoom level) are similar. However, all these databases are targeted to specific diseases. These

databases do not handle several tasks. Additionally, there are many high scale HI datasets, which include WSIs of high

resolutions.

TCGA  includes around 10,000 images from different types of cancer. Genotype-Tissue Expression (GTE)  includes

around 20,000 WSIs from different tissues. The Stanford Tissue Microarray Database (TMAD) is available for researchers

to access images of microarrays for tissue. It provides images of archiving 349 distinguished probes on 1488 microarray

slides of tissue . The CAMELYON dataset is a collection of WSI tissues for the sentinel lymph node. It contains

CAMELYON16 and CAMELYON17 challenges that include 399 WSI and 1000 WSI, respectively. The data are currently

accessed via registration on the CAMELYON17 website . The Breast Cancer Histopathological Image (BreakHis)

contains 9109 macroscopic images for the tissue of the breast tumor obtained from 82 patients in various magnifying

factors (40X, 100X, 200X). Up to now, it includes samples of 2480 benign and 5429 malignant WSIs .

Table 2. Some common downloadable WSI databases.
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Datasets No Slides Staining Diseases

TCGA 18,462 H&E Cancer

GTE 25,380 H&E Normal

TMAD 3726 H&E/IHC various tissue

TUPAC16 821 from TCGA H&E Breast cancer

Camelyon17 1000 H&E Breast cancer (lymph node metastasis)

Kӧbel et al. 80 H&E Ovarian carcinoma

KIMIA Path24 24 H&E/IHC various tissue

Table 3. Some publicly available hand-annotated histopathological images.

Datasets
No of
Images

Staining Organs Potential Usage

KIMIA960 960 H&E/IHC Different tissue Classification

Bio-segmentation 58 H&E Breast Classification

Bioimaging challenge 2015 269 H&E Breast Classification

GlaS 165 H&E Colorectal Gland segmentation

BreakHis 7909 H&E Breast Classification

Jakob Nikolas et al. 100 IHC Colorectal Detection of blood vessel

MITOS-ATYPIA-14 4240 H&E Breast Detection of mitosis, classification

Kumar et al. 30 H&E
Different

cancer
Segmentation of Nuclear

MITOS 100 H&E Breast Detection of mitosis

Janowczyk et al. 374 H&E Lymphoma classification

Janowczyk et al. 85 H&E Colorectal Segmentation of gland

Ma et al. 81 IHC Breast TIL analysis
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Linder et al. 1377 IHC Colorectal
Segmentation of epithelium and

stroma
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