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Osteoporosis is characterized by low bone mass and damage to the bone tissue’s microarchitecture, leading to
increased fracture risk. Extracellular vesicles (EVs) are intercellular communicators, transfer substances
encapsulated in them, modify the phenotype and function of target cells, mediate cell-cell communication, and,

therefore, have critical applications in disease progression and clinical diagnosis and therapy.
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| 1. Introduction

Osteoporosis is an age-related bone disease characterized by reduced bone mass and bone microarchitecture
destruction, resulting in decreased bone strength, increased bone fragility, and fracture risk [l. Sustained stress
can inhibit osteoblast activity and enhance osteoclast-mediated bone resorption, thus possibly leading to a
decrease in bone mass in the long term 2. However, cell-cell communications that exacerbate these processes are
not well understood to date. In recent years, extracellular vesicles (EVs) have emerged as critical modulators of
cell-cell communication in health and disease 2!, and can regulate the function of osteoblasts and osteoclasts, and

consequently have a potential impact on osteoporosis 4!,

| 2. The Characteristics of Extracellular Vesicles

EVs is a general term for numerous vesicles with a lipid bilayer membrane structure released by cells into the
extracellular environment . Based on their subcellular origin and biogenesis, EVs divide into three main
categories: small EVs (also known as exosomes), medium/large EVs (also known as microvesicles), and apoptotic
bodies . Exosomes are vesicles with a =40-200 nm diameter and uniform size, which are released from
intracellular multivesicular bodies (MVBs) fused with the cytoplasmic membrane B |n contrast, microvesicles
are non-uniform particles ranging from 200-2000 nm in diameter that are formed and released from the
cytoplasmic membrane in a budding manner. Apoptotic cells undergo programmed cell death and release apoptotic
bodies (800-5000 nm in diameter), which share certain characteristics with microvesicles 19, EVs carry multiple
biomolecules, including DNA, RNA, proteins, glycans, lipids, and metabolites 112 Thus, they can be used as
cargoes to deliver information and alter the signaling pathways and biochemical composition of receptor cells. EVs
can be derived from a variety of cells, such as mesenchymal stem cells (MSCs) 23], immune cells 24!, tumor cells
131 platelets 28, and cardiomyocytes 7. Furthermore, they can be detected in most body fluids, such as
peripheral blood, breast milk, semen, urine, and saliva 18, Thus, EVs have been recognized increasingly as

promising biomarkers for the diagnosis and prognosis of several diseases.
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The composition of EVs has a crucial influence on their biological functions; as transmitters, EVs can activate cell
surface receptor binding on target cells through proteins and bioactive lipid ligands, thereby inducing intracellular
signaling and regulating the biological activity of the target cells. Besides, EVs can deliver their contents to target
cells by fusing with the plasma membrane 419 Figure 1 shows the biogenesis and secretion of EVs and their
effects on target cells. Studies on EVs show that they have a complex composition, including lipids, proteins,
nucleic acids, and other metabolites. These components play an essential role in the function of EVs. Nucleic acids
carried by EVs can be potential biomarkers because of their genetic characteristics 29, Current research is more
focused on microRNA (miRNA, miR). MiRNAs are 17-24 nucleotide endogenous, non-coding RNAs, which post-
transcriptionally silence target genes’ expression by binding to the 3’-untranslated region (UTR) open reading
frame region of target messenger RNAs [21122] thus playing a vital regulatory role in the organism. Because of the
potential relevance of miRNAs as disease markers and therapeutic tools, it is of great importance to further our
understanding of their biological properties and functions 2324 The roles of EVs in human tissues are listed in
Table 1.
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Figure 1. The biogenesis and secretion of EVs and their effects on target cells. The formation of exosomes begins
with the endocytosis of the cell membrane. The endosome membrane sprouts inward to form vesicles, which
transform into MVB. MVB can be sent to lysosomes for degradation or secreted into the exosomes (40-200 nm) by
fusion with the plasma membrane. Microvesicles (200-2000 nm) are vesicles formed through a process of
membrane budding or exocytosis. EVs can interact with target cells through receptor-mediated binding.
Additionally, target cells can internalize EVs by target cells through endocytosis, pinocytosis, and plasma

membrane fusion 22, where EVs can release their cargoes to affect target cells, or be degraded by lysosomes.
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Table 1. Role of EVs in human tissues

Tissue Functions Reference

Biomarker
Alters tumor microenvironment
Tumor [18][19][26][27]

Regulates tumor immune response

Involved in tumor angiogenesis

Biomarker
Regulates osteogenic differentiation of mesenchymal stem cells

Bone Regulates osteoblast proliferation and activity [4][28]29]30]
Affects osteoblast differentiation

Regulates osteoclast function and induces osteoclast differentiation

Biomarker
Heart Promotes angiogenesis (311[32]

Cardioprotection and regeneration

Biomarker
Brain Influences inflammatory and regulatory pathways in the brain [33][34][35]

Neuroprotective effect

Kidney Biomarker

Involved in the development of renal fibrosis Contributing to kidney

repair
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Immunomodulation

Gastro-intestinal
act Response of anti-apoptotic, antioxidant stress [S7][38]
rac

Regulates the homeostasis of gut microbiota

| 3. The Role of EVs in Osteoporosis
3.1. Overview of Osteoporosis and Bone Remodeling

As one of the human body’s essential tissues, bone needs sufficient stiffness and toughness to maintain bone
strength to avoid fractures. In terms of the body’s natural processes, the positive balance between bone formation
(by osteoblasts) and bone resorption (by osteoclasts) before adulthood increases bone mass and reaches its peak
(typically achieved at different skeletal sites from 25 to 35 age years %)), and bone remodeling balance maintains

bone mass in adulthood. However, with increasing age, most bone loss occurs during and after menopause.

Bone remodeling, a lifelong process, refers to bone formation (form new bone tissue) and bone resorption (remove
mature bone from the skeleton). This process involves skeletal-related cells, such as osteoclasts, osteoblasts,
osteocytes, and several immune cells, such as T cells, B cells, and megakaryocytes 9. Bone remodeling occurs
in the basic multicellular unit, consisting of osteoblasts, osteoclasts, and osteocytes within the bone-remodeling
cavities 1. The process begins with bone-resorbing osteoclasts, followed by bone-forming osteoblasts, and in
normal bone, the remodeling cycle results in complete filling of the resorption cavity with new bone [#1l[42]
Osteocytes, the most abundant cells in bone tissues, can sense and respond to environmental mechanical stimuli
and regulate bone formation and bone resorption 3. Thus, osteocytes are the central coordinator of bone
reconstruction and mineral homeostasis. In the bone remodeling process, runt-related transcription factor 2
(Runx2) and Osterix plays an essential role for osteoblast differentiation 24l43] and the osteoclast differentiation is
mainly regulated by the receptor activator of nuclear factor k-B ligand (RANKL)/receptor activator of nuclear factor
K-B(RANK)/osteoprotegerin pathway. Namely, osteoblasts can produce RANKL, which can bind to RANK on
osteoclasts’ precursor, thus promoting osteoclast differentiation. To tightly regulate osteoclastogenesis, osteoblasts
also secrete osteoprotegerin to compete with RANK to bind RANKL, thus inhibiting osteoclast differentiation 28!,

3.2. EVs Regulate Osteoclasts Differentiation and Activity

MiRNAs, as one of the cargoes carried by EVs, have a vital role in bone homeostasis. For example, the highly
expressed miR-503-3p in EVs released by osteoblasts can inhibit osteoclastogenesis by inactivating the
RANK/RANKL signaling pathway [“748] Besides, blood vessels play an essential role in bone repair and
regeneration 42, A study by Song et al. BY demonstrated that EVs derived from the vascular endothelial cell have

more effective bone targeting than those derived from osteoblast or bone marrow mesenchymal stem cells
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(BMSCs) and can inhibit the activity and differentiation of osteoclasts through miR-155. Thus, the miR-155-
containing EVs may be a potential target against osteoporosis. Interestingly, some tumor cells can affect osteoclast
function by secreting EVs. Increased expression of miR-21 was observed in EVs derived from lung
adenocarcinoma cells, which promoted osteoclastogenesis by targeting programmed cell death protein 4 B,
Similarly, breast cancer cells secrete miR-20a-5p-containing EVs, which promote the proliferation and

differentiation of osteoclasts 321,

EVs can affect bone remodeling by directly regulating osteoclast differentiation and activity. Huynh et al. B3l found
that the EVs derived from osteoclast precursors stimulate the formation of vitamin D-dependent osteoclasts.
However, EVs from osteoclast-enriched cultures inhibited osteoclastogenesis. The results of this experimental
study show that the EVs from mature osteoclasts contain RANK, which could competitively inhibit the stimulation of
RANK on the osteoclast surface, similar to the role of osteoprotegerin mentioned above. Besides, the RANK-
containing EVs can use the RANK/RANKL interaction to target RANKL-expressing cells to transfer regulatory
molecules (2. Moreover, osteoblasts can affect osteoclasts by secreting EVs. The RANKL-containing EVs
released by osteoblasts are transferred to the precursors of osteoclasts, thus stimulating RANKL/RANK signal
transduction and promoting the formation of osteoclasts 4. To better understand the role of EVs in osteoblast-
osteoclast communication, researchers loaded osteoblast-derived EVs with osteoclast-inhibiting drugs (zoledronate
and dasatinib). They found that osteoblast EVs internalized and shuttled osteoclast-inhibiting drugs to inhibit
osteoclasts’ activity in vivo and in vitro 23, which opens up an avenue for the use of EVs in the treatment of bone

diseases. The above studies show that EVs from a variety of cells can regulate osteoclasts.

3.3. EVs Affect Osteoblasts and Osteogenic Function

Osteoblasts are the bone-forming cells of remodeling units and are crucial for skeletal growth and maintenance 58!,
As mentioned above, osteoblasts can secrete EVs to influence osteoclast function. In turn, osteoclasts can secrete
EVs that modulate osteoblast activity. Sun et al. B2 found that osteoclasts secrete miR-214-containing EVs,
specifically recognizing osteoblasts through the ephrina2/ephrin type-A receptor 2 interaction. Moreover, miR-214
directly targets activating transcription factor 4 to inhibit bone formation 8. The osteoclast-derived EVs exist not
only in the bone microenvironment but they can also enter the blood. Researchers found upregulated levels of
miR-214 in serum EVs of osteoporotic patients, which means that miR-214 in EVs serve as a potential biomarker
of bone loss BZ. Likewise, osteoclasts-derived miR-23a-5p-containing EVs inhibit the activity of osteoblasts by
targeting Runx2 B2, Therefore, the EV-mediated intercellular communication between osteoblasts and osteoclasts

may be a new direction for the study of bone remodeling mechanisms.

MSCs are known to stimulate tissue regeneration. Furthermore, EVs released from MSCs have attracted much
attention in bone research. A recent study showed that BMSCs-derived EVs could regulate osteoblast
differentiation and osteogenic gene expression in vitro, thus improving osteogenic function (9. Additionally, MSCs-
derived EVs induce osteogenic differentiation and mineralization during the late stages of osteogenic
differentiation. Furthermore, target prediction of differentially expressed miRNAs in EVs suggests a significant

enrichment of signaling pathways regulating osteogenic differentiation 8. Some researchers have explored the
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possible clinical applications of BMSCs based on previous literature. For example, Fang et al. 62 found that
BMSCs-derived EVs significantly reverse the decreased osteogenic differentiation of BMSCs in steroid-induced
femoral head necrosis, thus serving as a potential therapeutic strategy for steroid-induced femoral head necrosis.
These studies reveal the potential application of MSCs-derived EVs in bone regeneration therapy. Many studies

support the role of EVs in bone remodeling, shown in Table 2, but it is not discussed in detail.

Table 2. A summary of EVs associated with bone remodeling.

Bioactive
Source Factors Target Function References
Containing
Osteoclasts RANK Osteoclasts Inhibits osteoclast formation [53]
Inhibits the activity of osteoblasts
through ephrina2/ephrin type-A
Osteoclasts miR-214 Osteoblasts receptor 2 interaction and targets [57][58]

activating transcription factor 4 to inhibit

bone formation

. Inhibits the activity of osteoblasts by .
Osteoclasts miR-23a-5p Osteoblasts ) [59]
targeting Runx2

Osteoclasts miR-214-3p Osteoblasts Inhibits osteoblastic bone formation [63]

Facilitates osteoclast formation by

Osteoclast o =
Osteoblasts RANKL binding RANK on the osteoclast [54]
precursors
precursor surface
Osteoblasts RANKL Osteoclasts Induces the apoptosis of osteoclasts [55]
The
Preosteoblasts  TRIP-1 extracellular Promotes mineralization [64]

matrix of bone
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BMSCs miR-196a Osteoblasts Improves osteogenic function (601

) Inhibits osteogenic differentiation by [65]
BMSCs miR-885-5p BMSCs )
repressing Runx2

BMSCs miR-151-5p BMSCs Promotes osteogenic differentiation (66l
Endothelial ) Inhibits the activity and differentiation of [50]
miR-155 Osteoclasts
cells osteoclasts
Endothelial Inhibits osteogenic differentiation b
miR-31 MSCs _ 9 / (67
cells repressing Frizzled-3

(BMSCs: Bone marrow mesenchymal stem cells; MSCs: Mesenchymal stem cells; RANK: Receptor activator of

nuclear factor k-B; RANKL: Receptor activator of nuclear factor k-B ligand; TRIP-1: Transforming growth factor

beta receptor Il interacting protein-1; Runx2: Runt-related transcription factor 2).
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