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Heap leaching is a firm extractive metallurgical technology facilitating the economical processing of different kinds of low-

grade ores that are otherwise not exploited.
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1. Introduction

According to Toro et al. , copper mining is an industry that is in constant growth, and approximately 25 million tons are

produced annually worldwide . Among the copper minerals on the planet, the vast majority correspond to sulfide ores .

Within these copper minerals, chalcopyrite stands out as the most abundant, representing 70% of all minerals that contain

copper in the Earth’s crust . Copper is recovered from these minerals mainly through flotation, followed by

pyrometallurgical processing, representing 80–85% of world’s copper production . However, pyrometallurgical

treatment is difficult and expensive for low-grade copper ores producing high emissions of sulfur dioxide (SO ), NOx, and

CO , which cause problems, such as acid rain and increased local pollution .

In addition, flotation techniques generate a large amount of waste, which results in tailings dams with a high possibility of

generating acid mine drainage (AMD) due to the oxidation of minerals with a high presence of pyrite . The latter is

essential to consider since the drainage of mining waste rocks is one of the most important environmental challenges

facing the global mining industry due to its dynamics and persistence . AMD creates a severe environmental

problem allied with mining and mineral processing due to its very low pH (<3.0) and high concentrations of possibly toxic

dissolved metals, metalloids, and sulfate. Without appropriate management, AMD can result in considerable

environmental degradation, water, and soil contamination, severe health deterioration among neighboring communities,

and damaged biodiversity in aquatic ecosystems .

All of the above has led to the need to investigate the development of a profitable hydrometallurgical process to treat

these minerals since hydrometallurgy is a good alternative to process both oxidized minerals and sulfide minerals

environmentally friendly . Heap leaching is a hydrometallurgical approach and continuously developing mineral

processing and extraction technology that is gaining attractiveness and recognition in the mineral industry. Heap leaching

has solid benefits over traditional metallurgical methods where economically viable options have become limited .

2. Heap Leaching as an Alternative Route in Hydrometallurgy

For Watling et al. , certain issues motivate the use of hydrometallurgical methods, even for sulfide ores, for example,

the high copper demand; the continuous decay of the ore grades; and the extensive exploitation of oxide and secondary

sulfide minerals. The low-grade may eventually leave large amounts of low-grade chalcopyrite ores as an important, but

so far, uneconomical source of copper. This has prompted the use of processes such as heap leaching. Heap leaching

began to be used in the middle of the 20th century.

Nevada’s gold and silver heap leaching as the “birthplace” of modern gold heap leaching . The first modern

copper heap leach operation may have been the Bluebird copper oxide mine in 1968, followed in the early 1970s by other

small operations in the United States. Uranium producers have already utilized the heap leaching of uranium through

either acid or alkaline solutions since the late 1950s. Large-scale heap leaching can be said to have started in 1980 when

three major copper projects were commissioned in Chile, and, at approximately the same time, a large number of gold

projects were commissioned in the United States .

Heap leaching has been developed for many different types of minerals, climates, and operations of any size . Further

than copper oxide, uranium, and gold, today there are an extensive variety of applications, including copper sulfide ores,

gold-bearing pyritic ores, and non-metallic minerals (such as saltpeter ) as well as soil remediation . Heap
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leaching is typically applied for low-grade deposits; however, it might also be applied to small higher-grade deposits in

remote or politically high-risk locations to reduce capital cost. Heap leaching from low-grade ores has contributed to the

total global production of copper, gold, silver, and uranium . Heap leaching has also been considered for zinc 

 and nickel  and more lately for platinum group metal (PGM)-bearing ores and electronic scrap .

In heap leaching, the crushed ore is stacked on an impermeable pad, and leaching reagents (a strong acid, commonly

sulfuric acid for copper or nickel ores or a dilute cyanide solution for gold and silver-bearing ores) are added by irrigation

from the top. The wanted mineral is extracted, and the solution is gradually loaded as it penetrates through the pile.

Leaching may be aided by microorganisms resident within the ore bed, particularly in the existence of sulfide minerals. A

drainage system collects the pregnant leach solution (PLS) at the base of the heap. The PLS is then pumped to the

processing units to extract the value metal.

The barren leach solution (BLS) is sent to the barren solution pond, from where, after solution makeup, it is reapplied to

the heap’s surface . A typical heap leaching circuit is shown in Figure 1. This process is conducted in leaching piles,

where their typical height is between 4 and 10 m, although in some cases, they can reach 18 m . In addition, the

largest sizes generally range between 10 and 40 mm in heap leaching, and sizes less than 6 mm are unacceptable. This

is because small-sized particles affect the heap’s permeability, mainly clay minerals result in increased clogging of heaps

over time due to swelling and gradual decrepitation .

Figure 1. Typical heap leach flow diagram for copper (modified from ).

For the leaching process to be efficient, the fine particles tend to agglomerate around the larger particles with water and

concentrated sulfuric acid, a process known as “curing.” This process improves the strength of the material while having

good mineral permeability in heap leaching. In addition, it helps to achieve adequate heap heights, improve copper

recovery rates, and control processing times . It is worth mentioning that another emerging method is bio-

hydrometallurgy, which plays an important role in the recovery of copper with economic, environmental, and social

benefits. To date, it has been reported that many investigations on the acid bioleaching of secondary  and

primary sulfides have presented good results.

3. Effect of Ore Mineralogy on Copper Heap Leaching Performance

Copper heap leach projects are sometimes evaluated without adequate mineralogy, despite the lack of a clear and

comprehensive mineralogical sturdy, which could significantly affect the heap efficiency and expected recovery and

operating costs . Heap leaching processes operate over approximately three months for sulfide minerals in

chlorinated media and lower ore grades in typical operations. This is why several studies have emphasized the essential

need to characterize the mineral’s physical, chemical, and mineralogical properties to be leached .

Problems with copper heap leaching may arise from the ore mineralogy, more specifically, the presence of reagent

consuming gangues and clays minerals. Ghomi et al.  analyzed the effect of polar organic reagents on chalcopyrite

leaching, Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy (SEM-EDS) analysis was performed

(Figure 2), where the presence of aluminosilicate or clay-type gangues was detected in area 4, with a high percentage of

aluminum, silicon, and oxygen, which can be corroborated by Figure 3.
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Figure 2. SEM image of the chalcopyrite leaching residue after 120 min of leaching in 1.5 mol/L of [H SO ], 2 mol/L of

[H O ], and 2 mol/L of isopropanol solution at 65 °C (Modified from ).

Figure 3. EDS microanalysis of areas indicated in the SEM (Modified from ).

For their part, Helle and Kelm  studied leaching with sulfuric acid, focusing on the retention of copper by the reactive

gangue. Gangue minerals can considerably affect acid consumption and copper recovery and change the acid

requirements in different unit operations . Critical factors for acid consumption in oxidized copper ores include the

presence of carbonate; the presence of other short-term and long-term acid consumers; and the degree of acid adsorption

by different non-carbonate minerals (e.g., clays, oxides of hydrated iron, highly porous copper minerals, and/or mineral-

forming silts) .
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