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We discovered H2S as a signaling molecule which is produced by enzymes to modulate the synaptic transmission and

relax vasculature. The cytoprotective effect, anti-inflammatory activity, energy formation, and oxygen sensing by H2S have

been subsequently demonstrated. Two additional pathways for the production of H2S with 3-mercaptopyruvate

sulfurtransferase (3MST) from l- and d-cysteine have been identified. We also discovered that hydrogen polysulfides

(H2Sn, n ≥ 2) are potential signaling molecules produced by 3MST. H2Sn regulate the activity of ion channels and

enzymes, as well as even the growth of tumors. S-Sulfuration (S-sulfhydration) proposed by Snyder is the main

mechanism for H2S/H2Sn underlying regulation of the activity of target proteins. 
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1. Identification of H S as a Signaling Molecule

Patients that recover from H S poisoning show cognitive decline, and the levels of neurontransmitters in the brains of

animals exposed to H S change, suggesting that the brain is vulnerable to H S toxicity . Warenycia et al. measured the

levels of H S accumulated in the brain of rats exposed to H S when they discovered a certain amount of H S in the brain

even without exposure to H S . Although the concentrations were overestimated, the existence of endogenous H S was

identified in the brain.

Pyridoxal 5′-phosphate-dependent enzymes, cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE), have been

suggested to regulate several pathways. CBS catalyzes the first step of the transsulfuration pathway in which

cystathionine is produced from serine and homocysteine, and cystathionine is further catalyzed by CSE to cysteine. An

alternate pathway exists in which CBS catalyzes the condensation of cysteine with homocysteine to generate

cystathionine and H S . CSE catalyzes an elimination reaction which metabolizes cysteine to pyruvate, NH , and H S

. However, rather than being recognized as a physiologically active molecule, in these early studies, H S was merely

thought to be a byproduct of the metabolic pathways.

The observations that H S is produced by enzymes and exists in the brain prompted us to study a physiological role of

this molecule. The activities of CBS and CSE have been intensively studied in the liver and kidney, but little is known

about them in the brain. We found CBS in the brain and confirmed the production of H S, which is augmented by S-

adenosyl methionine (SAM) .

Other gaseous signaling molecules NO and carbon monoxide (CO) induce hippocampal long-term potentiation (LTP), a

synaptic model of memory formation, as retrograde messengers, which are produced at postsynapse and released to

presynapse to facilitate a release of a neurotransmitter glutamate from presynapse . We examined whether or

not H S has a similar effect. H S facilitated the induction of LTP by enhancing the activity of N-methyl-d-aspartate (NMDA)

receptors but not as a retrograde messenger .

NMDA receptors are activated by a reducing substance dithiothreitol (DTT) through the reduction of a cysteine disulfide

bond located at the hinge of the ligand-binding domain . Because H S is a reducing substance, it is likely to be a

mechanism for facilitating the induction of LTP. However, H S with one-tenth of the concentration of DTT exerted a greater

effect than that of DTT . This observation suggested that there is an additional mechanism for LTP induction by H S.

The prominent neuroscientist Solomon Snyder commented the following in Science News: “They have very impressive

evidence that H S is a potential neurotransmitter. It is an exciting paper that should stimulate a lot of people’s interest” .
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2. Identification of H S  as Signaling Molecules

During this study, we found that a batch of NaHS, i.e., the sodium salt of H S, with yellowish color was much more potent

than the colorless batch. We successfully reproduced a solution with a similar color by dissolving elemental sulfur into

Na S solution according to a report by Searcy and Lee . The color came from H S , which induces Ca  influx in

astrocytes much more potently than H S . H S  are natural inorganic polymeric sulfur–sulfur species or sulfane

sulfur, which we later found to be produced by 3-mercaptopyruvate sulfurtransferase (3MST) from 3-mercaptopyruvate 

 and the partial oxidation of H S , such as via the chemical interaction with NO . H S  (2.6 µM) exists in the

brain almost equivalent to the level of H S (3 µM) . Ca  influx induced in astrocytes by AITC, cinnamaldehyde,

selective activators of TRPA1 channels, and Na S  was greatly suppressed by HC030031 and AP-18, selective inhibitors

of TRPA1 channels. In astrocytes transfected with TRPA1-siRNA, Ca  influx was not efficiently induced by Na S  .

The EC  value for H S was 116 µM, while that for H S  was 91 nM, suggesting that H S  rather than H S are ligands for

TRPA1 channels . The amino terminus of TRPA1 channels has 24 cysteine residues , and two cysteine

residues Cys422 and Cys634 are sensitive to H S  .

S-Sulfuration (S-sulfuhydration) was proposed by Snyder and colleagues to regulate the activity of target proteins by H S

. This proposal needs a minor revision to highlight H S  but not H S S-sulfurate cysteine residues. In contrast, H S S-

sulfurates oxidized cysteine residues such as those S-nitrosylated and S-sulfenylated . H S  S-sulfurate (S-sulfhydrate)

two cysteine residues of TRPA1 channels to induce the conformational changes to activate the channels. As an alternative

mechanism, one cysteine residue, which is S-sulfurated, reacts with the remaining cysteine residue to generate a cysteine

disulfide bond. Although the conformation has not been examined in detail, the latter mechanism may induce

conformational changes more efficiently than the former one.

3. Synergy and Crosstalk between H S and NO

H S relaxes vascular smooth muscle in synergy with NO . A similar result was also obtained in the ileum . Whiteman

et al. proposed that the chemical interaction of H S with NO generate nitrosothiol, which releases NO in the presence of

Cu  . Filipovic et al. reported that H S and NO produces nitroxyl (HNO) as a major product, as well as H S  ,

while Cortese-Krott et al. suggested that SSNO  as a major product with H S  as a minor one . We proposed that H S

are major products . The effect of H S  and that of the products obtained from the mixture of Na S and diethylamine

NONOate, an NO donor, were eliminated when they were exposed to cyanide or DTT . In contrast, HNO is resistant to

cyanide, and SSNO  is resistant to DTT. Based on these observations, H S  are potential chemical entities produced from

H S and NO . Bogdandi et al. recently suggested that H S  transiently activate TRPA1 channels at the early

phase of the production from H S and NO, while the more stable product SSNO  sustainably activates the channels .

4. Vascular Tone Regulation by H S and H S

Since H S relaxes vascular smooth muscle in synergy with NO  and activates ATP-dependent K  (K ) channels , it

has been suggested that H S is a potential endothelial-derived hyperpolarizing factor (EDHF), which is a component of

endothelial-derived relaxing factor (EDRF) . However, previous studies showed that the hyperpolarization induced by

EDHF is resistant to glibenclamide, a K  channel blocker . The relaxation of vascular smooth muscle in the

mesenteric bed, which is mediated predominantly by EDHF, is rather abolished by apamine, a blocker of Ca -activated

K  channels .

H S  are potential EDHFs (Figure 1). H S  produced by 3MST together with cysteine aminotransferase (CAT), both of

which are localized to the vascular endothelium , or H S  generated by the chemical interaction between H S and

NO produced by endothelial NO synthase (eNOS) can activate TRPA1 channels  localized to myoendothelial

junctions. The channels induce Ca  influx, which activate Ca -activated K  channels to hyperpolarize the endothelial cell

plasma membrane. The change in membrane potential is conducted via myoendothelial gap junctions to hyperpolarize the

vascular smooth muscle .
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Figure 1. H S  are potential EDHFs. Both 3MST and eNOS are localized to endothelium. H S  produced by 3MST or by

the chemical interaction between H S and NO activate TRPA1 channels present in myoendothelial junctions to induce

Ca  influx, which activates Ca -dependent K  channels. The change in membrane potential is conducted via gap

junction to hyperpolarize the smooth muscle plasma membrane.

5. Cytoprotective Effect of H S, H S , and H SO

The impression of H S as toxic gas led to its cytoprotective effect being overlooked . Expecting that all cells would be

killed by H S, I applied NaHS to cells and incubated for overnight. On the contrary, cells were lively and survived from the

toxin. H S increases the production of glutathione (GSH), a major intracellular antioxidant, by enhancing the activity of

cystine/glutamate antiporter, which incorporates cystine into cells, and of glutamate cysteine ligase (GCL), a rate-limiting

enzyme for GSH production . H S also facilitates the translocation of GSH into mitochondria . The protective

activity of H S is also exerted through the stabilization of membrane potential by enhancing the activity of K  channels

and cystic fibrosys transmembrane conductance regulator (CFTR) Cl  channels . Lefer and colleagues demonstrated

that H S protects the heart from ischemia/reperfusion injury by preserving mitochondrial function .

6. Signaling by H S, H S  through S-Sulfuration and Bound Sulfane Sulfur

In addition to CBS and CSE, 3MST, along with CAT or DAO, was recognized to produce H S from l- or d-cysteine,

respectively . Subsequently, 3MST was found to produce H S  and other S-sulfurated molecules such as

cysteine persulfide, GSSH, and S-sulfurated cysteine residues . Other enzymes such as sulfide-quinone

oxidoreductase (SQR), haemoglobin, neuroglobin, catalase, super oxide dismutase (SOD), cysteine tRNA synthetase

(CARS), and peroxidases have been identified to produce H S  and other S-sulfurated molecules 

.

In total, 10–20% of cysteine residues of proteins are S-sulfurated , also observed as a part of bound sulfane sulfur,

which releases H S under reducing conditions, including H S , cysteine persulfide, GSSH, and S-sulfurated cysteine

residues . In cells and tissues, 5–12% of total protein cysteine residues are oxidized, such as S-nitrosylated

(P-CysSNO) and S-sulfenylated (P-CysSOH), and this can be increased to more than 40% under oxidative conditions 

(Figure 2). The amount of bound sulfane sulfur and its associated species is distinct among tissues. For example, heart

homogenates release H S under reducing conditions much less than those from the liver and the brain, while heart

homogenates absorb H S as fast as liver homogenates . P-CysSNO and P-CysSOH react with H S to generate P-

CysSSH, while they do not release H S under reducing conditions. These observations suggest that the heart may

contain P-CysSNO and P-CysSOH more abundantly than the liver and the brain.
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Figure 2. S-Sulfuration of cysteine residues by H S and H S . Cysteine residues are S-sulfenylated by H O  and S-

nitrosylated by NO. These oxidized cysteine residues are S-sulfurated by H S. In contrast, cysteine residues are S-

sulfurated by H S .

Some cysteine residues are oxidized by H O  to generate S-nitrosylated cysteine residues, and some others are S-

nitrosylated by NO. These oxidized cysteine residues are S-sulfurated by H S rather than H S  (Figure 2). Cys150 and

Cys156 of GAPDH may be in the different oxidation state as described previously . Zivanovic et al. demonstrated

that the activity of manganese superoxide dismutase is suppressed through S-sulfenylation by H O , while the activity is

recovered by H S, which S-sulfurates the S-sulfenylated cysteine residues . The same group showed that epidermal

growth factor (EGF) activates its receptor in which the levels of S-sulfenylated cysteine residues are increased at the early

phase, and those of S-sulfurated residues are increased at late phase when the expression of H S producing enzymes is

enhanced. H S S-sulfurates those S-sulfenylated cysteine residues to regulate their activity (Figure 2).

Another role of S-sulfuration is that it enables proteins to recover their functions from over-oxidization. Sulfinic (Protein-

CysSO H) and sulfonic acids (Protein-CysSO H) are not reduced back to Protein-CysSH by thioredoxin and deteriorate

the protein function. In contrast, S-sulfurated proteins P-CysSSO H and P-CysSSO H can be reduced by thioredoxin to

P-CysSH .
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