

Limosilactobacillus reuteri Fermented Brown Rice

Subjects: **Biology**

Contributor: Deog-Hwan Oh

Oxidative stress has been postulated to play a role in several diseases, including cardiovascular diseases, diabetes, and stress-related disorders (anxiety/depression). Presently, natural plant-derived phytochemicals are an important tool in reducing metabolomic disorders or for avoiding the side effects of current medicinal therapies. Brown Rice (*Oryza sativa* L.) is an important part of Asian diets reported as a rich source of bioactive phytonutrients.

brown rice

fermentation

antioxidants

oxidative stress

untargeted metabolomics

UHPLC-QTOF/MS

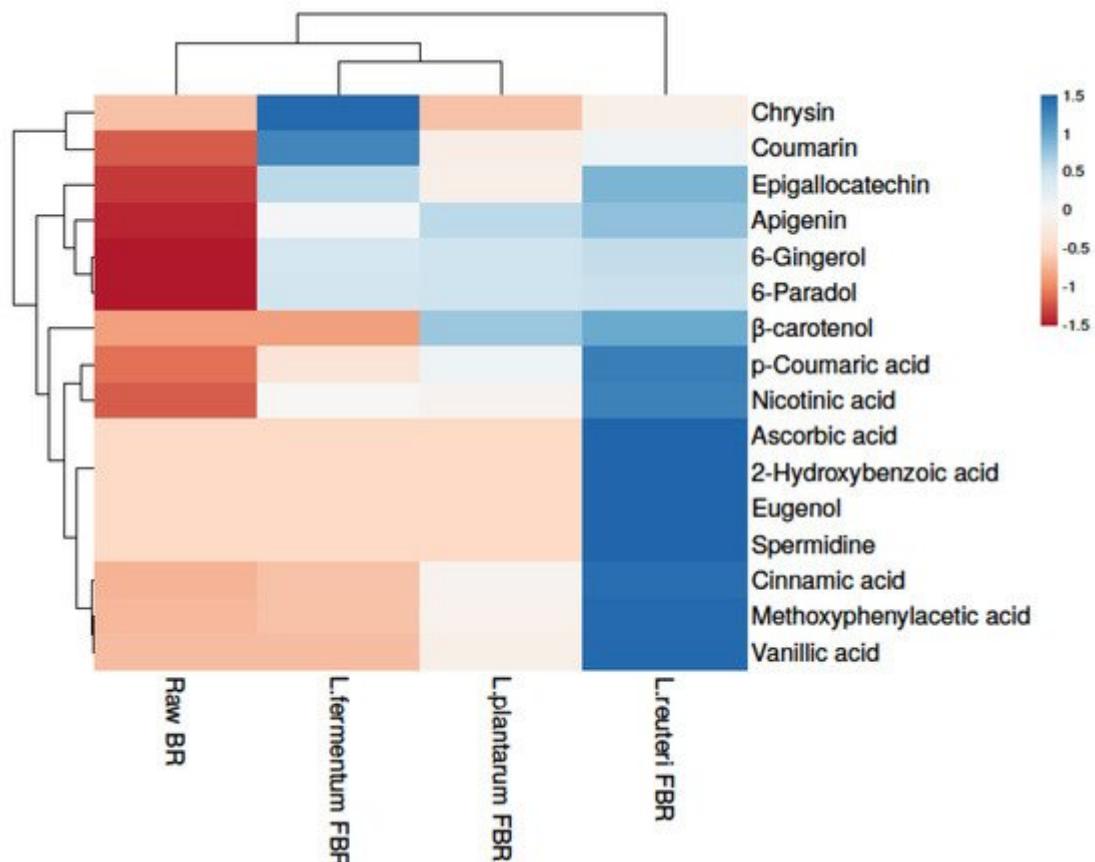
health benefits

1. Introduction

Oxidative stress is a condition that is caused by an imbalance between antioxidants and free radicals of living organisms. This imbalance occurs due to the excessive production of reactive oxygen species (ROS) or antioxidant deficiency that leads to the damage of aerobic organisms as well as chronic inflammation; referred to as oxidative stress [1]. Lower ROS concentration is important for normal cellular signalling, while excess ROS can cause oxidative damage to DNA, lipids, proteins, and is associated with several chronic diseases [2][3]. The current definition of oxidative stress includes metabolic stress-related pathways that participate in both cellular and extracellular metabolic events. The biology of oxidative stress is extremely complex, with multiple mechanisms at work [4]. Regardless of the mechanism, oxidative stress causes the onset of many diseases including cardiovascular diseases, diabetes, and anxiety or depression which are considered a major public health issue worldwide. As a result, consuming antioxidants to prevent oxidative stress is becoming important for health. Moreover, an increase in the health-consciousness of consumers has increased the demand for nutritional and disease-preventing functional foods, probiotics, prebiotics, and postbiotics. Numerous studies have focused on probiotics, specifically *lactobacilli* strains, that have the potential to act as antioxidants to protect the host from oxidative stress [5]. Some *lactobacilli* strains have been found to quench oxygen free radicals using a chemical antioxidant method.

Many studies have been reported that phytochemicals (e.g., polyphenols and phenolic acids) derived from natural plants have the potential to target oxidative stress and inflammatory pathways [6][7]. Rice is a staple food (in many countries) that belongs to the grass family (*Oryza sativa*). The total worldwide production of rice was about 769,657,791 tonnes in an area of 167,249,103 ha. Epidemiological studies have shown that the low incidence of

chronic diseases in rice-consuming regions can be correlated with rice antioxidants [8][9]. The antioxidant activity and phytochemical content of brown rice (BR) have been recorded in several studies. Components such as γ -oryzanol, phenolic acids, gamma-aminobutyric acid (GABA), flavonoids, and γ -tocotrienol contribute to the health-promoting properties of brown rice [10].


Evidence supports the effect of solid-state fermentation (SSF) techniques using lactic acid bacteria (LABs) and fungal strains on antioxidant levels and bioactive properties in a variety of substrates, including barley [11], pearl millet [12], and rice [2]. Many researchers, food scientists, and industrialists use the SSF process to enhance the nutritional quality of food and food products. Biological methods are environmentally friendly, relatively safe, and rely on the use of appropriate and specific microorganisms [13]. Our study aimed to provide knowledge to quantify the quality of these phytochemical antioxidants in whole brown rice to meet the needs of food producers and consumers of rice: (1) to analyze the antioxidant properties of differently fermented brown (FBR) rice over raw brown rice (BR); (2) detection of bioactive compounds in raw BR and different LABs fermented brown rice using ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-QTOF/MS), and (3) detection of cellular antioxidant activity of the best LAB fermenting bacterial strain (*L. reuteri* FBR).

2. Untargeted Metabolomics Using UHPLC Q-TOF-MS/MS in Brown Rice Samples

UHPLC Q-TOF-MS/MS detection is considered a gold standard technique for the precise detection and quantification of a wide variety of components. Therefore, in this study, we have used this detection technique for the identification of phenolic compounds in brown rice.

2.1. Phenolic Compounds

In the present research, the phenolic compositions of BR treated with different fermentation bacteria were selected and positively or tentatively identified by UHPLCQ-TOF-MS/MS. Phenolic identification and characterization were achieved by comparing our results with mass spectral literature evidence and cross-referencing it with other available spectral databases, such as Metlin and Metabolomics Workbench. A total of 15 phenolic compounds were tentatively found from our soluble extracts of raw BR, *L. reuteri* FBR, *L. fermentum* FBR, and *L. plantarum* FBR respectively, as shown in **Table 1**. In the ethanol extract, we identified compounds 1 to 14 at different adduct charges $[M - H]^-$ and $[M - H]^+$ which are identified by comparing with mass spectral libraries, XCMS online (Metlin), and Metabolomics Workbench. Heat map analysis was used for clustering phenolic compounds based on their concentrations (**Figure 1**) where the colour scheme from blue to red shows concentration in decreasing order.

Figure 1. Heat map showing levels of phenolic compounds in raw and LABs fermented BR samples.

Table 1. Phenolic compounds detected in raw and LABs fermented BR.

S. No	Sample Name	Retention Time (min)	Peak Area	Adduct/Charge	Precursor Mass	Found at Mass	Molecular Formula	Tentative Phenolic Compound
1	Raw BR	Nd	Nd	[M - H]−	Nd	Nd		
	<i>L. plantarum</i> FBR	45.56	$\times 10^5$	[M - H]−	353.268	353.187		
	<i>L. fermentum</i> FBR	Nd	Nd	[M - H]−	Nd	Nd	$C_{25}H_{36}O$	Beta-carotene
	<i>L. reuteri</i> FBR	45.45	$\times 10^5$	[M - H]−	353.268	353.284		
2	Raw BR	Nd	Nd	[M + H]+	Nd	Nd	$C_{10}H_{12}O_2$	Eugenol
	<i>L. plantarum</i> FBR	Nd	Nd	[M + H]+	Nd	Nd		

S. No	Sample Name	Retention Time (min)	Peak Area	Adduct/Charge	Precursor Mass	Found at Mass	Molecular Formula	Tentative Phenolic Compound
3	<i>L. fermentum</i> FBR	Nd	Nd	[M + H]+	Nd	Nd		
	<i>L. reuteri</i> FBR	20.81	2.24 × 10 ⁵	[M + H]+	179.107	179.1067		
	Raw BR	33.80	2.20 × 10 ⁵	[M - H]-	293.177	293.1761		
	<i>L. plantarum</i> FBR	33.80	2.08 × 10 ⁶	[M - H]-	293.177	293.176		
	<i>L. fermentum</i> FBR	33.81	2.03 × 10 ⁶	[M - H]-	293.177	293.1761	C ₁₇ H ₂₆ O ₄	6-Gingerol
	<i>L. reuteri</i> FBR	33.80	2.13 × 10 ⁶	[M - H]-	293.177	293.1762		
	Raw BR	Nd	Nd	[M + H]+	Nd	Nd		
4	<i>L. plantarum</i> FBR	Nd	Nd	[M + H]+	Nd	Nd		
	<i>L. fermentum</i> FBR	14.78	4.09 × 10 ⁵	[M + H]+	253.052	253.0524	C ₁₅ H ₁₀ O ₄	Chrysin
	<i>L. reuteri</i> FBR	14.81	1.01 × 10 ⁵	[M + H]+	253.052	253.0527		
5	Raw BR	Nd	Nd	[M + H]+	Nd	Nd	C ₁₆ H ₈ N ₂ O ₅	Apigenin
	<i>L. plantarum</i> FBR	14.79	4.68 × 10 ⁵	[M + H]+	269.047	269.0457		
	<i>L. fermentum</i> FBR	14.78	3.38 × 10 ⁵	[M + H]+	269.047	269.0457		
	<i>L. reuteri</i> FBR	14.78	5.15 ×	[M + H]+	269.047	269.0458		

S. No	Sample Name	Retention Time (min)	Peak Area	Adduct/Charge	Precursor Found at Mass	Molecular Mass	Formula	Tentative Phenolic Compound
10^5								
	Raw BR	Nd	Nd	[M + H] ⁺	Nd	Nd		
	<i>L. plantarum</i> FBR	1.92	1.24×10^5	[M + H] ⁺	147.044	147.0444		
6	<i>L. fermentum</i> FBR	1.87	2.94×10^5	[M + H] ⁺	147.044	147.0447	C ₉ H ₆ O ₂	Coumarin
	<i>L. reuteri</i> FBR	1.90	1.55×10^5	[M + H] ⁺	147.044	147.0445		
	Raw BR	Nd	Nd	[M + H] ⁺	Nd	Nd		
	<i>L. plantarum</i> FBR	12.26	7.44×10^5	[M + H] ⁺	305.071	305.067		
7	<i>L. fermentum</i> FBR	12.28	1.20×10^6	[M + H] ⁺	305.071	305.067	C ₁₅ H ₁₄ O ₇	Epigallocatechin
	<i>L. reuteri</i> FBR	12.28	1.38×10^6	[M + H] ⁺	305.071	305.067		
	Raw BR	Nd	Nd	[M + H] ⁺	Nd	Nd		
	<i>L. plantarum</i> FBR	Nd	Nd	[M + H] ⁺	Nd	Nd		
8	<i>L. fermentum</i> FBR	Nd	Nd	[M + H] ⁺	Nd	Nd	C ₇ H ₁₉ N ₃	Spermidine
	<i>L. reuteri</i> FBR	0.96	8.75×10^5	[M + H] ⁺	188.176	188.1761		
9	Raw BR	38.06	3.21×10^4	[M - H] ⁻	277.182	277.1812	C ₁₇ H ₂₆ O ₃	6-Paradol
	<i>L. plantarum</i> FBR	38.06	$4.38 \times$	[M - H] ⁻	277.182	277.1812		

S. No	Sample Name	Retention Time (min)	Peak Area	Adduct/Charge	Precursor Found at Mass	Molecular Mass	Formula	Tentative Phenolic Compound
			10^5					
	<i>L. fermentum</i> FBR	38.08	4.33×10^5	$[\text{M} - \text{H}]^-$	277.182	277.1813		
	<i>L. reuteri</i> FBR	38.06	4.42×10^5	$[\text{M} - \text{H}]^-$	277.182	277.1812		
	Raw BR	Nd	Nd	$[\text{M} - \text{H}]^-$	Nd	Nd		
	<i>L. plantarum</i> FBR	4.01	3.26×10^5	$[\text{M} - \text{H}]^-$	147.046	147.0455		
10	<i>L. fermentum</i> FBR	4.03	4.46×10^4	$[\text{M} - \text{H}]^-$	147.046	147.0456	$\text{C}_9\text{H}_8\text{O}_2$	Cinnamic acid
	<i>L. reuteri</i> FBR	3.98	1.09×10^6	$[\text{M} - \text{H}]^-$	147.046	147.0454		
	Raw BR	Nd	Nd	$[\text{M} + \text{NH}_4]^+$	Nd	Nd		
	<i>L. plantarum</i> FBR	1.86	1.06×10^6	$[\text{M} + \text{NH}_4]^+$	182.081	182.0813		
11	<i>L. fermentum</i> FBR	1.92	6.90×10^5	$[\text{M} + \text{NH}_4]^+$	182.081	182.0813	$\text{C}_9\text{H}_8\text{O}_3$	p-Coumaric acid
	<i>L. reuteri</i> FBR	1.87	2.13×10^6	$[\text{M} + \text{NH}_4]^+$	182.081	182.0812		
12	Raw BR	Nd	Nd	$[\text{M} - \text{H}]^-$	Nd	Nd	$\text{C}_9\text{H}_{10}\text{O}_3$	Methoxyphenylacetic acid
	<i>L. plantarum</i> FBR	15.28	5.20×10^6	$[\text{M} - \text{H}]^-$	165.057	165.0558		
	<i>L. fermentum</i> FBR	15.29	4.09×10^5	$[\text{M} - \text{H}]^-$	165.057	165.056		

Results showed that the highest phenolic compounds were detected in the *L. reuteri* FBR sample. Because phenolic compounds are not readily available, they typically occur in cereals in esterified linkages to the cereal wall matrix [14]. Fermentation is considered to be a possible strategy to release insoluble or bound phenolic compounds and thus leading to improve the poor bioavailability of grain phenolics. Comparing different fermenting bacteria in the present study we found that *L. reuteri* fermentation releases most of the phenolic compounds compared with

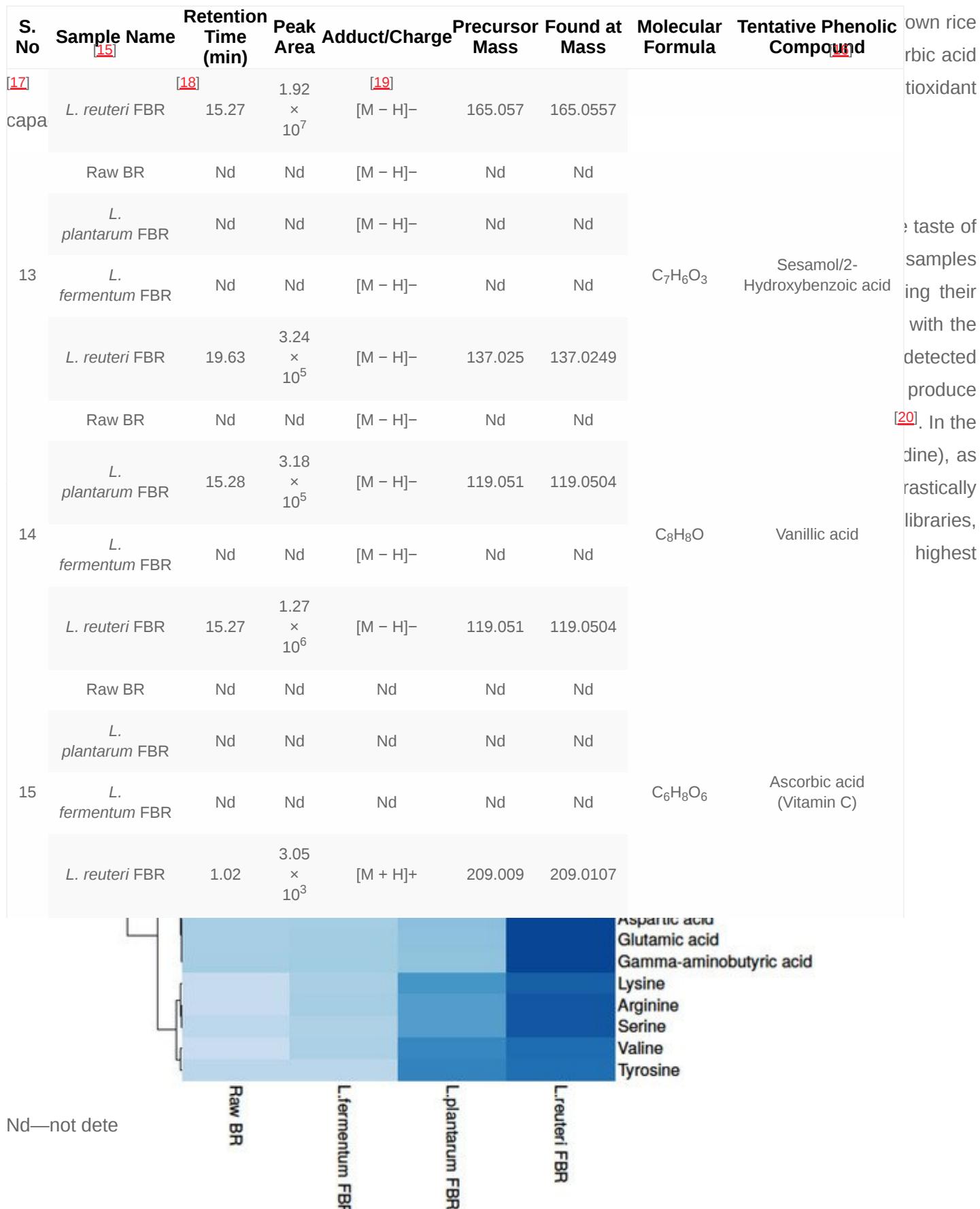


Figure 2. Heat map showing levels of amino acids in raw and different fermented BR samples.

Table 2. Amino acids detected in raw and LABs fermented brown rice.

S. No	Sample Name	Retention Time (Min)	Peak Area	Adduct/Precursor Charge	Mass	Found at Mass	Formula Finder Result	Amino Acid
1	Raw BR	1.00	1.52 × 10 ³	[M + H] ⁺	156.077	156.077	C ₆ H ₉ N ₃ O ₂	Histidine
	<i>L. plantarum</i> FBR	1.00	7.31 × 10 ⁵	[M + H] ⁺	156.077	156.077		
	<i>L. fermentum</i> FBR	1.02	6.33 × 10 ⁵	[M + H] ⁺	156.077	156.0771		
	<i>L. reuteri</i> FBR	1.02	7.45 × 10 ⁵	[M + H] ⁺	156.077	156.0771		
2	Raw BR	ND	ND	[M - H] ⁻	ND	ND	C ₆ H ₁₄ N ₂ O ₂	Lysine
	<i>L. plantarum</i> FBR	1.02	9.16 × 10 ⁵	[M - H] ⁻	145.099	145.0982		
	<i>L. fermentum</i> FBR	1.02	2.17 × 10 ⁵	[M - H] ⁻	145.099	145.0984		
	<i>L. reuteri</i> FBR	1.02	1.40 × 10 ⁶	[M - H] ⁻	145.099	145.0983		
3	Raw BR	ND	ND	[M + H] ⁺	ND	ND	C ₅ H ₁₁ NO ₃ S	Methionine
	<i>L. plantarum</i> FBR	1.17	5.66 × 10 ⁵	[M + H] ⁺	166.053	166.0536		
	<i>L. fermentum</i> FBR	1.17	5.33 × 10 ⁵	[M + H] ⁺	166.053	166.0537		
	<i>L. reuteri</i> FBR	1.18	8.41 × 10 ⁵	[M + H] ⁺	166.053	166.0536		

S. No	Sample Name	Retention Time (Min)	Peak Area	Adduct/Precursor Charge	Mass	Found at Mass	Formula Finder Result	Amino Acid
4	Raw BR	1.17	2.56×10^2	[M - H]-	146.047	146.0457		
	<i>L. plantarum</i> FBR	1.47	3.18×10^5	[M - H]-	146.047	146.046		
	<i>L. fermentum</i> FBR	1.47	4.58×10^4	[M - H]-	146.047	146.046	$C_5H_9NO_4$	Glutamic acid
	<i>L. reuteri</i> FBR	1.47	2.65×10^6	[M - H]-	146.047	146.0458		
5	Raw BR	ND	ND	[M + H]-	ND	ND		
	<i>L. plantarum</i> FBR	1.16	1.38×10^5	[M - H]-	102.057	102.056		
	<i>L. fermentum</i> FBR	1.16	2.76×10^4	[M - H]-	102.057	102.0563	$C_4H_9NO_2$	Gamma-aminobutyric acid
	<i>L. reuteri</i> FBR	1.16	1.28×10^6	[M - H]-	102.057	102.0561		
6	Raw BR	ND	ND	[M + H]+	ND	ND		
	<i>L. plantarum</i> FBR	1.11	2.81×10^6	[M + H]+	175.118	175.1183		
	<i>L. fermentum</i> FBR	1.14	9.09×10^5	[M + H]+	175.118	175.1194	$C_6H_{14}N_4O_2$	Arginine
	<i>L. reuteri</i> FBR	1.11	4.99×10^6	[M + H]+	175.118	175.1184		
7	Raw BR	ND	ND	[M - H]-	ND	ND	$C_5H_{11}NO_2$	Valine

S. No	Sample Name	Retention Time (Min)	Peak Area	Adduct/Precursor Charge	Found at Mass	Formula Finder Result	Amino Acid
8	<i>L. plantarum</i> FBR	1.49	6.15×10^5	[M - H] ⁻	116.073 116.0717		
	<i>L. fermentum</i> FBR	1.50	1.37×10^5	[M - H] ⁻	116.073 116.0718		
	<i>L. reuteri</i> FBR	1.45	7.61×10^5	[M - H] ⁻	116.073 116.0719		
	Raw BR	1.14	1.19×10^3	[M - H] ⁻	132.031 132.0307		
	<i>L. plantarum</i> FBR	1.15	7.26×10^4	[M - H] ⁻	132.031 132.0303	C ₄ H ₇ NO ₄	Aspartic acid
	<i>L. fermentum</i> FBR	1.15	8.76×10^3	[M - H] ⁻	132.031 132.0305		
9	<i>L. reuteri</i> FBR	1.12	4.89×10^5	[M - H] ⁻	132.031 132.0302		
	Raw BR	ND	ND	[M - H] ⁻	ND ND		
	<i>L. plantarum</i> FBR	4.01	2.26×10^6	[M - H] ⁻	164.072 164.0718		
10	<i>L. fermentum</i> FBR	4.03	3.50×10^5	[M - H] ⁻	164.072 164.072	C ₉ H ₁₁ NO ₂	Phenylalanine
	<i>L. reuteri</i> FBR	3.98	7.21×10^6	[M - H] ⁻	164.072 164.0718		
	Raw BR	ND	ND	[M - H] ⁻	ND ND	C ₅ H ₁₂ N ₂ O ₂	Ornithine
	<i>L. plantarum</i> FBR	1.01	$1.53 \times$	[M - H] ⁻	131.084 131.0827		

S. No	Sample Name	Retention Time (Min)	Peak Area	Adduct/Precursor Charge	Found at Mass	Formula Finder Result	Amino Acid
			10^5				
	<i>L. fermentum</i> FBR	1.01	6.67×10^4	[M - H] ⁻	131.084	131.0828	
	<i>L. reuteri</i> FBR	1.01	5.35×10^5	[M - H] ⁻	131.084	131.0827	
	Raw BR	1.12	3.31×10^2	[M - H] ⁻	104.036	104.0353	
	<i>L. plantarum</i> FBR	1.12	3.06×10^5	[M - H] ⁻	104.036	104.0353	
11						C ₃ H ₇ NO ₃	Serine
	<i>L. fermentum</i> FBR	1.13	4.70×10^4	[M - H] ⁻	104.036	104.0356	
	<i>L. reuteri</i> FBR	1.12	5.73×10^5	[M - H] ⁻	104.036	104.0353	
	Raw BR	ND	ND	[M - H] ⁻	ND	ND	
	<i>L. plantarum</i> FBR	2.46	1.95×10^6	[M - H] ⁻	130.088	130.0874	
12						C ₆ H ₁₃ NO ₂	Leucine
	<i>L. fermentum</i> FBR	2.48	3.24×10^5	[M - H] ⁻	130.088	130.0875	
	<i>L. reuteri</i> FBR	2.41	6.63×10^6	[M - H] ⁻	130.088	130.0875	
13	Raw BR	ND	ND	[M - H] ⁻	ND	ND	C ₅ H ₁₀ N ₂ O ₃ Glutamine
	<i>L. plantarum</i> FBR	ND	ND	[M - H] ⁻	ND	ND	
	<i>L.</i>	ND	ND	[M -	ND	ND	

S. No	Sample Name	Retention Time (Min)	Peak Area	Adduct/Precursor Charge	Found at Mass	Formula Finder Result	Amino Acid
14	<i>fermentum</i> FBR			H] ⁻			
	<i>L. reuteri</i> FBR	1.10	1.62×10^4	[M - H] ⁻	145.063 145.0619		
	Raw BR	ND	ND	[M - H] ⁻	ND	ND	
	<i>L. plantarum</i> FBR	1.98	3.38×10^5	[M - H] ⁻	180.068 180.0667		
	<i>L. fermentum</i> FBR	ND	ND	[M - H] ⁻	ND	ND	C ₉ H ₁₁ NO ₃ Tyrosine
	<i>L. reuteri</i> FBR	1.89	4.08×10^5	[M - H] ⁻	180.068 180.0667		
	Raw BR	ND	ND	[M - H] ⁻	ND	ND	
	<i>L. plantarum</i> FBR	ND	ND	[M - H] ⁻	ND	ND	
15	<i>L. fermentum</i> FBR	ND	ND	[M - H] ⁻	ND	ND	C ₄ H ₉ NO ₃ Threonine
	<i>L. reuteri</i> FBR	1.14	1.14×10^5	[M - H] ⁻	118.052 118.051		
	Raw BR	ND	ND	[M - H] ⁻	ND	ND	
	<i>L. plantarum</i> FBR	1.10	6.8×10^4	[M - H] ⁻	131.047 131.0462		
16	<i>L. fermentum</i> FBR	1.13	3.41×10^4	[M - H] ⁻	131.047 131.0464	C ₄ H ₈ N ₂ O ₃	Asparagine
	<i>L. reuteri</i> FBR	1.13	3.01×10^5	[M - H] ⁻	131.047 131.0461		terms of products. Due the most

researched compounds. In the present study, 13 fatty acids were detected in raw and different LABs fermented BR samples (**Table 3**) and fatty acid levels were found to be significantly different in all samples. The results show that the highest levels of fatty acids were found in *L. reuteri* FBR. Heat map analysis was used for separating fatty acids

S. No	Sample Name	Retention Time (Min)	Peak Area	Adduct/Precursor Charge	Precursor Mass	Found at Mass	Formula Finder Result	Amino Acid
17	Raw BR	ND	ND	[M - H]-	ND	ND		
	<i>L. plantarum</i> FBR	7.64	6.19×10^5	[M - H]-	203.084	203.0829		
	<i>L. fermentum</i> FBR	7.66	7.77×10^4	[M - H]-	203.084	203.0832	$C_{11}H_{12}N_2O_2$	Tryptophan
	<i>L. reuteri</i> FBR	7.61	2.78×10^6	[M - H]-	203.084	203.0829		
18	Raw BR	ND	ND	[M + H]+	ND	ND		
	<i>L. plantarum</i> FBR	ND	ND	[M + H]+	ND	ND		
	<i>L. fermentum</i> FBR	ND	ND	[M + H]+	ND	ND	$C_5H_9NO_2$	Proline
	<i>L. reuteri</i> FBR	0.86	7.90×10^5	[M + H]+	116.07	116.0704		

Figure 3. Heat map showing levels of fatty acids in raw and different LABs fermented BR samples.**Table 3.** Fatty acids detected in raw and LABs fermented brown rice.
ND—not detected, BR—brown rice, and FBR—fermented brown rice.

S. No	Sample Name	Retention Time	Peak Area	Adduct/Charge	Precursor Mass	Found at Mass	Formula Finder Result	Fatty Acid
1	Raw BR	39.97	1.91×10^2	[M - H]-	255.234	255.2331	$C_{16}H_{32}O_2$	Palmitic Acid
	<i>L. plantarum</i> FBR	1.94	5.15×10^3	[M - H]-	255.234	255.2331		
	<i>L. fermentum</i> FBR	28.03	4.28×10^3	[M - H]-	255.234	255.2332		
	<i>L. reuteri</i> FBR	23.73	$1.53 \times$	[M - H]-	255.234	255.2332		

S. No	Sample Name	Retention Time	Peak Area	Adduct/Charge	Precursor Mass	Found at Mass	Formula Finder Result	Fatty Acid
2	<i>L. fermentum</i> FBR	22.88	1.02×10^4	[M + H] ⁺	185.066	185.0663	$C_5H_{10}O_2$	Valeric acid
3	<i>L. fermentum</i> FBR	46.24	5.29×10^3	[M - H] ⁻	279.234	279.2332	$C_{18}H_{32}O_2$	Linoleic Acid
4	<i>L. reuteri</i> FBR	46.25	6.64×10^5	[M - H] ⁻	279.234	279.2334	$C_{17}H_{34}O_2$	Heptadecanoic acid
5	Raw BR	47.28	1.45×10^5	[M + H] ⁺	271.264	271.2637	$C_{18}H_{36}O_2$	Stearic acid
5	<i>L. reuteri</i> FBR	47.27	1.44×10^6	[M + H] ⁺	271.264	271.2638	$C_{18}H_{36}O_2$	Stearic acid
5	Raw BR	27.69	5.28×10^4	[M - H] ⁻	283.265	283.2644	$C_{18}H_{36}O_2$	Stearic acid

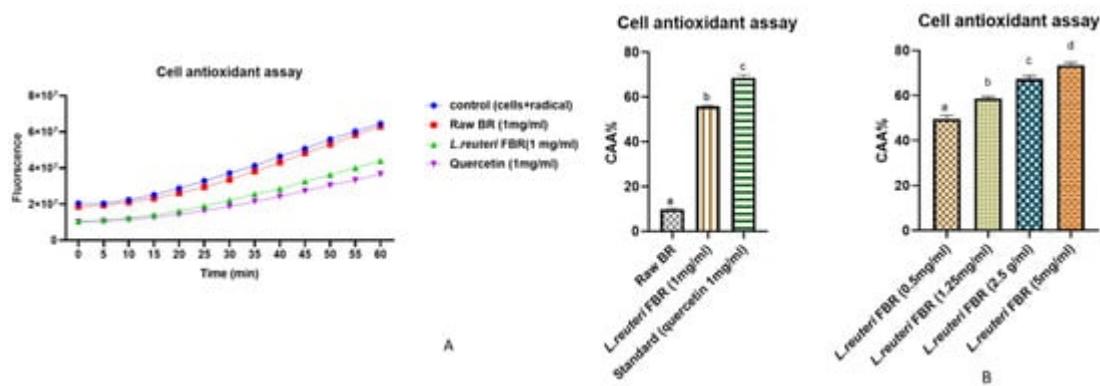
S. No	Sample Name	Retention Time	Peak Area $\times 10^3$	Adduct/Charge	Precursor Mass	Found at Mass	Formula Finder Result	Fatty Acid
6	<i>L. plantarum</i> FBR	49.10	1.23×10^6	[M - H]−	283.265	283.2645		
	<i>L. fermentum</i> FBR	49.09	1.20×10^6	[M - H]−	283.265	283.2644		
	<i>L. reuteri</i> FBR	49.10	1.24×10^6	[M - H]−	283.265	283.2645		
	Raw BR	34.57	3.18×10^4	[M - H]−	243.161	243.1605		
	<i>L. plantarum</i> FBR	34.58	2.98×10^5	[M - H]−	243.161	243.1606	$C_{13}H_{24}O_4$	Tridecanedioic acid
	<i>L. fermentum</i> FBR	34.58	2.90×10^5	[M - H]−	243.161	243.1604		
	<i>L. reuteri</i> FBR	34.57	3.01×10^5	[M - H]−	243.161	243.1605		
	Raw BR	ND	ND	[M + H]+	ND	ND		
	<i>L. plantarum</i> FBR	32.80	2.64×10^5	[M + H]+	213.149	213.1491		
	<i>L. fermentum</i> FBR	32.82	4.26×10^5	[M + H]+	213.149	213.1492	$C_{12}H_{20}O_3$	Traumatin
7	<i>L. reuteri</i> FBR	32.82	5.20×10^5	[M + H]+	213.149	213.1492		
	Raw BR	ND	ND	[M - H]−	ND	ND	$C_{18}H_{32}O_5$	Octadecadienoic acid/Corchorifatty acid F
8	<i>L. plantarum</i> FBR	ND	ND	[M - H]−	ND	ND		

S. No	Sample Name	Retention Time	Peak Area	Adduct/Charge	Precursor Mass	Found at Mass	Formula Finder Result	Fatty Acid
	<i>L. fermentum</i> FBR	ND	ND	[M - H]−	ND	ND		
	<i>L. reuteri</i> FBR	30.87	4.08 × 10 ⁵	[M - H]−	327.219	327.2181		
	Raw BR	ND	ND	[M - H]−	ND	ND		
	<i>L. plantarum</i> FBR	3.49	7.39 × 10 ⁴	[M - H]−	147.067	147.0667		
9	<i>L. fermentum</i> FBR	ND	ND	[M - H]−	ND	ND	C ₆ H ₁₂ O ₄	Mevalonic Acid
	<i>L. reuteri</i> FBR	3.47	3.13 × 10 ⁵	[M - H]−	147.067	147.0667		
	Raw BR	22.59	3.99 × 10 ⁴	[M - H]−	187.099	187.0979		
	<i>L. plantarum</i> FBR	22.50	2.77 × 10 ⁵	[M - H]−	187.099	187.0979		
10	<i>L. fermentum</i> FBR	22.61	6.12 × 10 ⁴	[M - H]−	187.099	187.0978	C ₉ H ₁₆ O ₄	Azelaic Acid
	<i>L. reuteri</i> FBR	22.50	6.25 × 10 ⁵	[M - H]−	187.099	187.0979		
11	Raw BR	ND	ND	[M - H]−	ND	ND	C ₉ H ₁₈ O ₃	9-Hydroxynonanoic acid
	<i>L. plantarum</i> FBR	23.49	3.10 × 10 ⁴	[M - H]−	173.119	173.1187		
	<i>L. fermentum</i> FBR	23.50	3.49 × 10 ³	[M - H]−	173.119	173.1188		
	<i>L. reuteri</i> FBR	23.48	1.39 ×	[M - H]−	173.119	173.1186		

3. Cell Viability Assay and Cellular Antioxidant Activity (CAA)

3.1. Cell Viability Assay

S. No	Sample Name	Retention Time	Peak Area	Adduct/Charge	Precursor Mass	Found at Mass	Formula Finder Result	Fatty Acid	any food ntrations
was			10^5				...y results of the extract after		12 h of
	Raw BR	39.06	2.45×10^3	[M - H]−	313.24	313.2389			up to 10 ntrations per cent
	<i>L. plantarum</i> FBR	39.07	3.52×10^5	[M - H]−	313.24	313.2388	[21]		
12	<i>L. fermentum</i> FBR	39.06	3.22×10^5	[M - H]−	313.24	313.2389	C ₁₈ H ₃₄ O ₄	Octadecanedioic acid	
	<i>L. reuteri</i> FBR	39.06	3.83×10^5	[M - H]−	313.24	313.2386			
	Raw BR	ND	ND	[M - H]−	ND	ND			
	<i>L. plantarum</i> FBR	33.48	3.12×10^5	[M - H]−	329.234	329.2337			
13	<i>L. fermentum</i> FBR	33.48	3.54×10^4	[M - H]−	329.234	329.2339	C ₁₈ H ₃₄ O ₅	Pinellic acid	
	<i>L. reuteri</i> FBR	32.82	7.37×10^6	[M - H]−	329.234	329.2331			


Figure 4. Effect of *L. reuteri* FBR extracts on viability of Caco-2 cells analyzed by Ez cytox assay kit. Cells were treated with an increased concentration of *L. reuteri* FBR extracts for 12 h. Data are represented as means \pm standard deviations ($n = 3$).

ND—not detected, BR—brown rice, and FBR—fermented brown rice.

3.2. Cellular Antioxidant Activity (CAA)

The effect of pretreatment of Caco-2 cells with *L. reuteri* fermented extract of brown rice on intracellular reactive oxygen species (ROS) was determined using a cell-based assay. The fluorescent probe DCFH-DA is used as an indicator of ROS and oxidative stress in our study. The nonionic and nonpolar DCFH-DA probe diffuses passively into cells before being hydrolyzed by intracellular esterases to form nonfluorescent 2',7'-dichlorofluorescein (DCFH). Later in the presence of ROS, DCFH that is trapped inside cells is oxidized into fluorescent 2',7'-dichlorofluorescein (DCF) [22]. When the cellular antioxidant defence system fails to compensate for ROS production, oxidative stress occurs. This reaction can be slowed down using bioactive compounds, preventing the generation of DCF. Following the uptake of antioxidant compounds can be accomplished on the cell membrane surface or within the cell [23]. We evaluated the effect of our *L. reuteri* FBR extract against oxidative stress in Caco-2 cells. In our study, ABAP was chosen as an intracellular oxidizing agent to simulate oxidative stress in cells. 600

$\mu\text{mol L}^{-1}$ ABAP was chosen as the optimal concentration to induce oxidation. As represented in **Figure 5A**, CAA values in *L. reuteri* FBR extract were observed to be 5.7 times higher than the raw BR sample at a concentration of 1mg/mL. Our results indicate that extracts reduced ROS levels at rest in a dose-dependent manner (**Figure 5B**); CAA values were increased with concentration (0.5 mg/mL to 5 mg/mL) from $49.50 \pm 1.67\%$ to $72.49 \pm 1.23\%$. The strength of inhibition strongly followed a curvilinear pattern as *L. reuteri* FBR extract concentrations increased. A similar effect was previously observed in the study of Grauzdytė et al., where they observed *Phyllanthus phillyreifolius* extracts in HEK-293 cells [24], and the study of Kellett et al. [25] in Caco-2 cells.

Figure 5. In Caco-2 cells, peroxyl radical-induced oxidation of DCFH to DCF and ROS inhibition by raw BR and *L. reuteri* FBR extract (**A,B**) showing the effect of dose-dependent inhibition of *L. reuteri* FBR extracts (0.5–5 mg/mL). Data were represented as means \pm standard deviations ($n = 3$) with one way ANOVA. The columns with different letters (a–d) show significant differences using Tukey's test at $p < 0.05$.

4. Conclusions

In our study, we discovered that *L. reuteri* FBR had higher antioxidant activity as well as a higher concentration of phenolics and flavonoids among all LABs used for the study. This shows the ability of *L. reuteri* as a promising fermentation strain to increase the bioavailability of cereals or grains in producing health-promoting functional materials. *L. reuteri* fermentation improves phenolic constituents and antioxidant activity of BR, improves food quality, and confers organoleptic characteristics. Furthermore, we discovered that *L. reuteri* FBR enhanced the production of essential amino acids and fatty acids using untargeted metabolomics. The present study has provided information on bioactive compounds and antioxidant activities as well as the cellular antioxidant capacities of *L. reuteri* FBR. These data are required for the processing of the whole BR and its products for the pharmaceutical and food markets. As a result, new strategies and collaborations among industry, researchers, and relevant agencies are required to publicize whole grain consumption. Additionally, the current research is part of ongoing efforts to increase the added value of brown rice production and use in the prevention of human chronic diseases caused by oxidative stress. Moreover, these findings also make this sample a promising material for the development of health-promoting functional food. Whereas, it is necessary to perform more research into the mechanisms of different types of fermentation (solid and liquid-state) on single/pure phenolic compounds and antioxidant properties. Furthermore, in vivo models should be used to study the bioavailability and absorption of phenolic compounds in the gut.

References

1. Poljsak, B.; Šuput, D.; Milisav, I. Achieving the Balance between ROS and Antioxidants: When to Use the Synthetic Antioxidants. *Oxidative Med. Cell. Longev.* 2013, 2013, 1–11.
2. Tyagi, A.; Yeon, S.-J.; Daliri, E.; Chen, X.; Chelliah, R.; Oh, D.-H. Untargeted Metabolomics of Korean Fermented Brown Rice Using UHPLC Q-TOF MS/MS Reveal an Abundance of Potential Dietary Antioxidative and Stress-Reducing Compounds. *Antioxidants* 2021, 10, 626.
3. Tyagi, A.; Daliri, E.B.-M.; Ofosu, F.K.; Yeon, S.-J.; Oh, D.-H. Food-Derived Opioid Peptides in Human Health: A Review. *Int. J. Mol. Sci.* 2020, 21, 8825.
4. Sack, M.N.; Fyhrquist, F.Y.; Sajjonmaa, O.J.; Fuster, V.; Kovacic, J.C. Basic biology of oxidative stress and the cardiovascular system: Part 1 of a 3-part series. *J. Am. Coll. Cardiol.* 2017, 70, 196–211.
5. Wang, Y.; Wu, Y.; Wang, Y.; Xu, H.; Mei, X.; Yu, D.; Wang, Y.; Li, W. Antioxidant Properties of Probiotic Bacteria. *Nutrients* 2017, 9, 521.
6. Callcott, E.; Blanchard, C.; Oli, P.; Santhakumar, A.B. Pigmented Rice-Derived Phenolic Compounds Reduce Biomarkers of Oxidative Stress and Inflammation in Human Umbilical Vein Endothelial Cells. *Mol. Nutr. Food Res.* 2018, 62, e1800840.
7. Shabbir, U.; Arshad, M.; Sameen, A.; Oh, D.-H. Crosstalk between Gut and Brain in Alzheimer's Disease: The Role of Gut Microbiota Modulation Strategies. *Nutrients* 2021, 13, 690.
8. Okarter, N.; Liu, R.H. Health Benefits of Whole Grain Phytochemicals. *Crit. Rev. Food Sci. Nutr.* 2010, 50, 193–208.
9. Imam, M.U.; Musa, S.N.A.; Azmi, N.H.; Ismail, M. Effects of White Rice, Brown Rice and Germinated Brown Rice on Antioxidant Status of Type 2 Diabetic Rats. *Int. J. Mol. Sci.* 2012, 13, 12952–12969.
10. Pang, Y.; Ahmed, S.; Xu, Y.; Beta, T.; Zhu, Z.; Shao, Y.; Bao, J. Bound phenolic compounds and antioxidant properties of whole grain and bran of white, red and black rice. *Food Chem.* 2018, 240, 212–221.
11. Sandhu, K.S.; Punia, S. Enhancement of bioactive compounds in barley cultivars by solid substrate fermentation. *J. Food Meas. Charact.* 2017, 11, 1355–1361.
12. Salar, R.K.; Purewal, S.S.; Sandhu, K.S. Fermented pearl millet (*Pennisetum glaucum*) with in vitro DNA damage protection activity, bioactive compounds and antioxidant potential. *Food Res. Int.* 2017, 100, 204–210.

13. Salar, R.K.; Purewal, S.S. Improvement of DNA damage protection and antioxidant activity of biotransformed pearl millet (*Pennisetum glaucum*) cultivar PUSA-415 using *Aspergillus oryzae* MTCC 3107. *Biocatal. Agric. Biotechnol.* 2016, 8, 221–227.

14. Dai, T.; Chen, J.; McClements, D.J.; Hu, P.; Ye, X.; Liu, C.; Li, T. Protein–polyphenol interactions enhance the antioxidant capacity of phenolics: Analysis of rice glutelin–procyanidin dimer interactions. *Food Funct.* 2019, 10, 765–774.

15. Janarny, G.; Gunathilake, K. Changes in rice bran bioactives, their bioactivity, bioaccessibility and bioavailability with solid-state fermentation by *Rhizopus oryzae*. *Biocatal. Agric. Biotechnol.* 2020, 23, 101510.

16. Zeki, E.; KÖSE, S.B.E.; GARLI, S.; ŞAHİNDOKUYUCU, F.K. The Antioxidant Effect of p-Coumaric Acid Against Toluene-Induced Oxidative Stress in Rats. *Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi* 2021, 24, 473–478.

17. El-Beltagi, H.S.; Mohamed, H.I.; Sofy, M.R. Role of Ascorbic acid, Glutathione and Proline Applied as Singly or in Sequence Combination in Improving Chickpea Plant through Physiological Change and Antioxidant Defense under Different Levels of Irrigation Intervals. *Molecules* 2020, 25, 1702.

18. Anlar, H.G. Chapter 23-Cinnamic Acid as a Dietary Antioxidant in Diabetes Treatment, 2nd ed.; Preedy, V.R., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 235–243.

19. Ahmadi, N.; Safari, S.; Mirazi, N.; Karimi, S.A.; Komaki, A. Effects of vanillic acid on A β 1-40-induced oxidative stress and learning and memory deficit in male rats. *Brain Res. Bull.* 2021, 170, 264–273.

20. Adebo, O.A.; Njobeh, P.B.; Adebiyi, J.A.; Gbashi, S.; Phoku, J.Z.; Kayitesi, E. Fermented Pulse-Based Food Products in Developing Nations as Functional Foods and Ingredients. In *Functional Food-Improve Health through Adequate Food*; InTechOpen: London, UK, 2017; pp. 77–109.

21. Gao, Y.; Guo, X.; Liu, Y.; Zhang, M.; Zhang, R.; Abbasi, A.M.; You, L.; Li, T.; Liu, R.H. Comparative assessment of phytochemical profile, antioxidant capacity and anti-proliferative activity in different varieties of brown rice (*Oryza sativa* L.). *LWT* 2018, 96, 19–25.

22. Girard-Lalancette, K.; Pichette, A.; Legault, J. Sensitive cell-based assay using DCFH oxidation for the determination of pro- and antioxidant properties of compounds and mixtures: Analysis of fruit and vegetable juices. *Food Chem.* 2009, 115, 720–726.

23. Chen, P.X.; Zhang, H.; Marcone, M.F.; Pauls, K.P.; Liu, R.; Tang, Y.; Zhang, B.; Renaud, J.B.; Tsao, R. Anti-inflammatory effects of phenolic-rich cranberry bean (*Phaseolus vulgaris* L.) extracts and enhanced cellular antioxidant enzyme activities in Caco-2 cells. *J. Funct. Foods* 2017, 38, 675–685.

24. Grauzdytė, D.; Pukalskas, A.; Viranaicken, W.; El Kalamouni, C.; Venskutonis, P.R. Protective effects of *Phyllanthus phillyreifolius* extracts against hydrogen peroxide induced oxidative stress

in HEK293 cells. *PLoS ONE* 2018, 13, e0207672.

25. Kellett, M.E.; Greenspan, P.; Pegg, R.B. Modification of the cellular antioxidant activity (CAA) assay to study phenolic antioxidants in a Caco-2 cell line. *Food Chem.* 2018, 244, 359–363.

Retrieved from <https://encyclopedia.pub/entry/history/show/34254>