Bioadhesive Biomaterials for Medical Application: Comparison
Please note this is a comparison between Version 2 by Catherine Yang and Version 1 by Nibedita Saha.

This article deliberates about the importance of polymer based bioadhesive biomaterial’s medical application in healthcare and redefining healthcare management. Nowadays application of bioadhesion in health sector is one of the great interest for various researchers, due to its recent advances in their formulation development. Actually, this area of study is considered as an active multidisciplinary research approach, where engineers, scientists—including chemists, physicists, biologists, and medical experts—materials’ producers, and manufacturers combine their knowledge in order to provide a better healthcare. Moreover, while discussing about the implications of value-based healthcare, it is necessary to mention that health comprises three main domains namely: physical, mental, and social health that prioritized not only the quality healthcare, but it also enables to measure the outcomes of medical interventions. In addition, this conceptual article provides an understanding about the consequences of natural or synthetic polymer based bioadhesion of biomaterials and its significance for redefining healthcare management as a novel approach. Furthermore, research assumptions highlights that the quality healthcare concept has recently become a burning topic where, healthcare service providers, private research institutes, government authorities, public service boards, associations and academics took initiative to restructure the health care system to create value for patients and increase their satisfaction, and lead ultimately to a healthier society.

Keywords: Bioadhesion; biomaterials; biomedical application; healthcare system management; innovation; polymer based bioadhesive

JEL Classification:  I1, I10, I11, I18, I21, I28, H51.

This entry deliberates about the importance of polymer based bioadhesive biomaterial’s medical application in healthcare and redefining healthcare management. Nowadays application of bioadhesion in health sector is one of the great interest for various researchers, due to its recent advances in their formulation development. Actually, this area of study is considered as an active multidisciplinary research approach, where engineers, scientists—including chemists, physicists, biologists, and medical experts—materials’ producers, and manufacturers combine their knowledge in order to provide a better healthcare. Moreover, while discussing about the implications of value-based healthcare, it is necessary to mention that health comprises three main domains namely: physical, mental, and social health that prioritized not only the quality healthcare, but it also enables to measure the outcomes of medical interventions. In addition, this conceptual article provides an understanding about the consequences of natural or synthetic polymer based bioadhesion of biomaterials and its significance for redefining healthcare management as a novel approach. Furthermore, research assumptions highlights that the quality healthcare concept has recently become a burning topic where, healthcare service providers, private research institutes, government authorities, public service boards, associations and academics took initiative to restructure the health care system to create value for patients and increase their satisfaction, and lead ultimately to a healthier society.

  • Bioadhesion
  • biomaterials
  • biomedical application
  • healthcare system management
  • innovation
  • polymer based bioadhesive
  • bioadhesion
Please wait, diff process is still running!

References

  1. Putera, I. Redefining Health: Implication for Value-Based Healthcare Reform. Cureus 2017, 9, 1067.
  2. Peled, H.B.; Pinhas, M.D. Bioadhesion and Biomimetics: From Nature to Applications; Pan Stanford: Boca Raton, FL, USA, 2015; 314p.
  3. Williams, D.F. On the nature of biomaterials. Biomaterials 2009, 30, 5897–5909.
  4. Williams, D.F. Definitions in Biomaterials; Elsevier: Amsterdam, The Netherlands, 1987.
  5. Brahmbhatt, D. Bioadhesive drug delivery systems: Overview and recent advances. Int. J. Chem. Life Sci. 2017, 6, 2016–2024.
  6. Palacio, M.L.B.; Bhushan, B. Bioadhesion: A review of concepts and applications. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2012, 370, 2321–2347.
  7. Sunarintyas, S. Bioadhesion of Biomaterials. In Biomaterials and Medical Devices; Mahyudin, F., Hermawan, H., Eds.; Springer: Cham, Switzerland, 2016; Volume 58, pp. 103–125.
  8. Rathi, S.; Saka, R.; Domb, A.J.; Khan, W. Protein-based bioadhesives and bioglues. Polym. Adv. Technol. 2018, 1–18.
  9. Torres, F.G.; Commeaux, S.; Troncoso, O.P. Biocompatibility of Bacterial Cellulose Based Biomaterials. J. Funct. Biomater. 2012, 3, 864–878.
  10. Rodríguez-Vázquez, M.; Vega-Ruiz, B.; Ramos-Zúñiga, R.; Saldaña-Koppel, D.A.; Quiñones-Olvera, L.F. Chitosan and Its Potential Use as a Scaffold for Tissue Engineering in Regenerative Medicine. BioMed Res. Int. 2015, 2015, 821279.
  11. Shi, C.; Zhu, Y.; Ran, X.; Wang, M.; Su, Y.; Cheng, T. Therapeutic Potential of Chitosan and Its Derivatives in Regenerative Medicine. J. Surg. Res. 2006, 133, 185–192.
  12. Prodan, A.M.; Andronescu, E.; Truşcă, R.; Beuran, M.; Iconaru, S.L.; Barna, E.Ş.; Chifiriuc, M.C.; Marutescu, L. Anti-biofilm Activity of Dextran Coated Iron Oxide Nanoparticles. Univ. Politeh. Buchar. Sci. Bull. Ser. B Chem. Mater. Sci. 2014, 76, 81–90.
  13. Zubay, G.L. Biochemistry, 4th ed.; W.C. Brown: Dubuque, IA, USA, 1998.
  14. Iconaru, S.L.; Turculet, C.S.; Coustumer, P.L.; Bleotu, C.; Chifiriuc, M.; Lazar, V.; Surugiu, A.; Badea, M.; Iordache, F.; Soare, M.; et al. Biological Studies on Dextrin Coated Iron Oxide Nanoparticles. Rom. Rep. Phys. 2016, 68, 1536–1544.
  15. Gale, A.J. Current Understanding of Hemostasis. Toxicol. Pathol. 2011, 39, 273–280.
  16. Mehdizadeh, M.; Yang, J. Design Strategies and Applications of Tissue Bioadhesives. Macromol. Biosci. 2013, 13, 271–288.
  17. Value-Based Healthcare: A Global Assessment; The Economist Intelligence Unit: London, UK, 2016.
  18. Petrova, M.; Dale, J.; Fulford, B.K.W.M. Values-based practice in primary care: Easing the tensions between individual values, ethical principles and best evidence. Br. J. Gen. Pract. 2006, 56, 703–709.
More