Gap-Fillers for Outdoor Wooden Artefacts: Comparison
Please note this is a comparison between Version 2 by Conner Chen and Version 1 by Magdalena Broda.

Conservation of wooden artefacts that are exposed outdoors, mainly in open-air museums, is a very complex and difficult issue that aims to preserve both the integrity and aesthetics of valuable objects. Unceasingly subjected to several factors, such as alternating weather conditions and the activities of microorganisms, algae, and insects, they undergo continuous changes and inevitable deterioration. Their biological and physical degradation often results in the formation of gaps and cracks in the wooden tissue, which creates a need not only for wood consolidation, but also for using specialist materials to fill the holes and prevent further degradation of an object. A variety of substances, both organic and inorganic, have been used for conservation and gap filling in historic wooden objects. The filling compounds typically consist of two components, of which one is a filler, and the second a binder.

  • gap-fillers
  • gap-filling materials
  • wooden artefacts
  • wood conservation
  • wood exposed outdoors
Please wait, diff process is still running!

References

  1. Sevan, O. Open Air Museums as Ways of Preserving and Transmitting the Spirit of Place. In Proceedings of the 16th ICOMOS General Assembly and International Symposium: ‘Finding the Spirit of Place—Between the Tangible and the Intangible’, Quebec, QC, Canada, 29 September–4 October 2008.
  2. Hurt, R.D. Agricultural Museums: A New Frontier for the Social Sciences. Hist. Teach. 1978, 11, 367–375.
  3. Rivers, S. Conservation of Japanese Lacquer in Western Collections-Conserving Meaning and Substance. In Proceedings of the Preprints of the 14th Triennial Meeting of the ICOM Committee for Conservation, The Hague, The Netherlands, 12–16 September 2005; James & James: London, UK, 2005; pp. 1083–1086.
  4. Schmidt, O. Wood and Tree Fungi: Biology, Damage, Protection, and Use; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006.
  5. Tolvaj, L.; Popescu, C.-M.; Molnar, Z.; Preklet, E. Effects of Air Relative Humidity and Temperature on Photodegradation Processes in Beech and Spruce Wood. BioResources 2016, 11, 296–305.
  6. Witomski, P. Konserwacja Zachowawcza a Trwa\lość Budowli Drewnianych. Bud. I Archit. 2015, 14, 157–164.
  7. Wermuth, J.A. Simple and Integrated Consolidation Systems for Degraded Wood. In Archaeological Wood; Advances in Chemistry; American Chemical Society: Washington, DC, USA, 1989; Volume 225, pp. 301–359. ISBN 978-0-8412-1623-5.
  8. Podmaniczky, M.S. Structural Fillsfor Large Wood Objects: Contrasting and Complementary Approaches. JAIC 1998, 37, 111–116.
  9. Barclay, R.; Mathias, C. An Epoxy/Microballoon Mixture for Gap Filling in Wooden Objects. JAIC 1989, 28, 31–42.
  10. Phillips, M.W.; Selwyn, J.E. Epoxies for Wood Repairs in Historic Buildings; Office of Archeology and Historic Preservation, Heritage Conservation and Recreation Service, US Department of the Interior, Technical Preservation Services Division: Washington DC, USA, 1978.
  11. Grattan, D.W.; Barclay, R.L. A Study of Gap-Fillers for Wooden Objects. Stud. Conserv. 1988, 33, 71–86.
  12. Cleary, R. Considering the Use of Epoxies in the Repair of Historic Structural Timber. Master’s Thesis, University of Pennsylvania, Philadelphia, PA, USA, 2014.
  13. Craft, M.L.; Solz, J.A. Commercial Vinyl and Acrylic Fill Materials. JAIC 1998, 37, 23–34.
  14. Deurenberg-Wilkinson, R.M. Choosing an Adhesive for Exterior Woodwork Through Mechanical Testing. JAIC 2015, 54, 74–90.
  15. Thornton, J. A Brief History and Review of the Early Practice and Materials of Gap-Filling Inthe West. JAIC 1998, 37, 3–22.
  16. Fulcher, K. An Investigation of the Use of Cellulose-Based Materials to Gap-Fill Wooden Objects. Stud. Conserv. 2017, 62, 210–222.
  17. Fulcher, K.E. Survey on Material Used to Fill Wooden Objects during Conservation. J Open Archaeol Data 2014, 3.
  18. Cataldi, A.; Dorigato, A.; Deflorian, F.; Pegoretti, A. Effect of the Water Sorption on the Mechanical Response of Microcrystalline Cellulose-Based Composites for Art Protection and Restoration. J. Appl. Polym. Sci. 2014, 131.
  19. Cataldi, A.; Deflorian, F.; Pegoretti, A. Microcrystalline Cellulose Filled Composites for Wooden Artwork Consolidation: Application and Physic-Mechanical Characterization. Mater. Des. 2015, 83, 611–619.
  20. Cataldi, A.; Dorigato, A.; Deflorian, F.; Pegoretti, A. Thermo-Mechanical Properties of Innovative Microcrystalline Cellulose Filled Composites for Art Protection and Restoration. J. Mater. Sci. 2014, 49, 2035–2044.
  21. Kryg, P.; Mazela, B.; Broda, M. Dimensional Stability and Moisture Properties of Gap-Fillers Based on Wood Powder and Glass Microballoons. Stud. Conserv. 2020, 65, 142–151.
  22. Infurna, G.; Cavallaro, G.; Lazzara, G.; Milioto, S.; Dintcheva, N.T. Bionanocomposite Films Containing Halloysite Nanotubes and Natural Antioxidants with Enhanced Performance and Durability as Promising Materials for Cultural Heritage Protection. Polymers 2020, 12, 1973.
  23. Cavallaro, G.; Milioto, S.; Lazzara, G. Halloysite Nanotubes: Interfacial Properties and Applications in Cultural Heritage. Langmuir 2020, 36, 3677–3689.
  24. Broda, M. Natural Compounds for Wood Protection against Fungi—A Review. Molecules 2020, 25, 3538.
  25. Bettina, G.F.; Giambra, B.; Cavallaro, G.; Lazzara, G.; Megna, B.; Fakhrullin, R.; Akhatova, F.; Fakhrullin, R. Restoration of a XVII Century’s Predella Reliquary: From Physico-Chemical Characterization to the Conservation Process. Forests 2021, 12, 345.
  26. Fulcher, K. The Diverse Use of AJK Dough in Conservation. J. Inst. Conserv. 2014, 37, 32–42.
  27. Abdallah, M.; Kamal, H.M.; Abdrabou, A. Investigation, Preservation and Restoration Processes of an Ancient Egyptian Wooden Offering Table. IJCS 2016, 7, 1047–1064.
  28. Williams, D.C. Some Experiences with Flexible Gap-Filling Adhesives for the Conservation of Wood Objects. In Proceedings of the Facing the Challenges of Panel Paintings Conservation: Trends, Treatments, and Training, Los Angeles, CA, USA, 17–18 May 2009.
  29. Unger, A.; Schniewind, A.; Unger, W. Conservation of Wood Artifacts: A Handbook; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2001.
  30. Leung, E.S.; Yeung, E.S.; Chan, S.W. Strike a Balance-Repair or Replace? Adv. Mater. Res. 2010, 133, 997–1002.
  31. Young, C.; Ackroyd, P.; Hibberd, R.; Gritt, S. The Mechanical Behaviour of Adhesives and Gap Fillers for Re-Joining Panel Paintings. Natl. Gallery Tech. Bull. 2002, 23, 83–96.
  32. Huuhilo, T.; Martikka, O.; Butylina, S.; Kärki, T. Mineral Fillers for Wood–Plastic Composites. Wood Mater. Sci. Eng. 2010, 5, 34–40.
  33. Antonelli, F.; Galotta, G.; Sidoti, G.; Zikeli, F.; Nisi, R.; Petriaggi, B.D.; Romagnoli, M. Cellulose and Lignin Nano-Scale Consolidants for Waterlogged Archaeological Wood. Front. Chem. 2020, 8.
  34. Hamed, S.A.A.K.M.; Hassan, M.L. A New Mixture of Hydroxypropyl Cellulose and Nanocellulose for Wood Consolidation. J Cult. Herit. 2019, 35, 140–144.
  35. Fierascu, R.C.; Doni, M.; Fierascu, I. Selected Aspects Regarding the Restoration/Conservation of Traditional Wood and Masonry Building Materials: A Short Overview of the Last Decade Findings. Appl. Sci. 2020, 10, 1164.
  36. Haldar, D.; Purkait, M.K. Micro and Nanocrystalline Cellulose Derivatives of Lignocellulosic Biomass: A Review on Synthesis, Applications and Advancements. Carbohydr. Polym. 2020, 250, 116937.
  37. Collazo-Bigliardi, S.; Ortega-Toro, R.; Boix, A.C. Isolation and Characterisation of Microcrystalline Cellulose and Cellulose Nanocrystals from Coffee Husk and Comparative Study with Rice Husk. Carbohydr. Polym. 2018, 191, 205–215.
  38. Katakojwala, R.; Mohan, S.V. Microcrystalline Cellulose Production from Sugarcane Bagasse: Sustainable Process Development and Life Cycle Assessment. J. Clean. Prod. 2020, 249, 119342.
  39. Rasheed, M.; Jawaid, M.; Karim, Z.; Abdullah, L.C. Morphological, Physiochemical and Thermal Properties of Microcrystalline Cellulose (MCC) Extracted from Bamboo Fiber. Molecules 2020, 25, 2824.
  40. El Hadidi, N.; Abdel-Monem, H.; Mohamed, M.; Hashem, G. Retreatment and Conservation of a Wooden Panel Previously Treated with Bees Wax. Adv. Res. Conserv. Sci. 2020, 1, 48–65.
  41. Artal-Isbrand, P. So Delicate yet so Strong and Versatile–the Use of Paper in Objects Conservation. JAIC 2018, 57, 112–126.
  42. Chen, H.; Nair, S.S.; Chauhan, P.; Yan, N. Lignin Containing Cellulose Nanofibril Application in PMDI Wood Adhesives for Drastically Improved Gap-Filling Properties with Robust Bondline Interfaces. Chem. Eng. J. 2019, 360, 393–401.
  43. Asgari, A.; Hemmasi, A.; Bazyar, B.; Talaeipour, M.; Nourbakhsh, A. Inspecting the Properties of Polypropylene/ Poplar Wood Flour Composites with Microcrystalline Cellulose and Starch Powder Addition. BioResources 2020, 15, 4188–4204.
  44. Karakus, K.; Atar, İ.; Başboğa, İ.H.; Bozkurt, F.; Mengeloğlu, F. Wood Ash and Microcrystalline Cellulose (MCC) Filled Unsaturated Polyester Composites. Kast. Univ. J. For. Fac. 2017, 17, 282–289.
  45. Hatchfield, P. Note on a Fill Material for Water Sensitive Objects. JAIC 1986, 25, 93–96.
  46. Iaccarino Idelson, A.; Pannuzi, S.; Brunetto, A.; Galanti, G.; Giovannone, C.; Massa, V.; Serino, C.; Vischetti, F. Use of 3D technologies within the conservation of the ancientwindows of the basilica of s. Sabina in rome. Construction ofexhibition stands in carbon composite on a milled structure. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, XLII-5/W1, 593–598.
  47. Nabil, E. Scientific Methods for the Treatment of Ibis Mummy’s Wooden Coffin. Egypt. J. Archaeol. Restor. Stud. 2020, 10, 9–21.
  48. Carlisle, K.B.; Chawla, K.K.; Gladysz, G.M.; Koopman, M. Structure and Mechanical Properties of Micro and Macro Balloons: An Overview of Test Techniques. J. Mater. Sci. 2006, 41, 3961–3972.
  49. Huang, R.; Li, P. Elastic Behaviour and Failure Mechanism in Epoxy Syntactic Foams: The Effect of Glass Microballoon Volume Fractions. Compos. Part B Eng. 2015, 78, 401–408.
  50. Hsu, H.-H.; Sully, D. Fusing and Refreshing the Memory: Conserving a Chinese Lacquered Buddha Sculpture in London. Stud. Conserv. 2016, 61, 124–130.
  51. Nakhla, S.M. A Comparative Study of Resins for the Consolidation of Wooden Objects. Stud. Conserv. 1986, 31, 38–44.
  52. Schellmann, N. Consolidation of Stressed and Lifting Decorative Coatings on Wood. The Effect on Consolidant Choice on the Structural Integrity of Multilayered East Asian Lacquer Coatings with Gesso-Like Foundation Layers. Ph.D. Thesis, Hochschule der Bildenden Künste Dresden, Dresden, Germany, 2012.
  53. Rivers, S.; Umney, N. Conservation of Furniture; Routledge: Oxfordshire, UK, 2007.
  54. Tuduce-Traistaru, A.-A.; Campean, M.; Timar, M.C. Compatibility Indicators in Developing Consolidation Materials with Nanoparticle Insertions for Old Wooden Objects. Int. J. Conserv. Sci. 2010, 1, 219–226.
  55. Schellmann, N.C. Animal Glues: A Review of Their Key Properties Relevant to Conservation. Stud. Conserv. 2007, 52, 55–66.
  56. McGlinchey, C. Polymers in Conservation. Encycl. Archaeol. Sci. 2018, 1–3.
  57. Jeszeová, L.; Bauerová-Hlinková, V.; Baráth, P.; Puškárová, A.; Bučková, M.; Kraková, L.; Pangallo, D. Biochemical and Proteomic Characterization of the Extracellular Enzymatic Preparate of Exiguobacterium Undae, Suitable for Efficient Animal Glue Removal. Appl. Microbiol. Biotechnol. 2018, 102, 6525–6536.
  58. Webb, M. Methods and Materials for Filling Losses on Lacquer Objects. JAIC 1998, 37, 117–133.
  59. Szczepińska, K. Historycznie Stosowane Impregnaty Do Wzmacniania Zniszczonego Drewna Polichromowanego–Próba Przeglądu. Część II: Impregnaty Syntetyczne. Acta Univ. Nicolai Copernic. Zabytkozn. I Konserw. 2015, 469–508.
  60. Szczepińska, K. Historycznie stosowane impregnaty do wzmacniania zniszczonego drewna polichromowanego–próba przeglądu. Część I: Impregnaty naturalne. Acta Univ. Nicolai Copernic. 2014, 569.
  61. Storch, P.S. Fills for Bridging Structural Gaps in Wooden Objects. J. Am. Inst. Conserv. 1994, 33, 71–75.
  62. Majewicz, T.G.; Erazo-Majewicz, P.E.; Podlas, T.J. Cellulose Ethers. Encycl. Polym. Sci. Technol. 2002.
  63. Shaghaleh, H.; Xu, X.; Wang, S. Current Progress in Production of Biopolymeric Materials Based on Cellulose,. Cellulose Nanofibers, and Cellulose Derivatives. RSC Adv. 2018, 8, 825–842.
  64. Walsh, Z.; Janeček, E.-R.; Jones, M.; Scherman, O.A. Natural Polymers as Alternative Consolidants for the Preservation of Waterlogged Archaeological Wood. Stud. Conserv. 2017, 62, 173–183.
  65. Cavallaro, G.; Lazzara, G.; Milioto, S.; Parisi, F. Halloysite Nanotubes for Cleaning, Consolidation and Protection. Chem. Rec. 2018, 18, 940–949.
  66. Elston, M. Technology and Conservation of a Polychromed Wooden Sarcophagus. In Proceedings of the Conservation in Ancient Egyptian Collections, London, UK, 20–21 July 1995; pp. 13–21.
  67. Gänsicke, S.; Hatchfield, P.; Hykin, A.; Svoboda, M.; Tsu, C.M.-A. The Ancient Egyptian Collection at the Museum of Fine Arts, Boston. Part 2, A Review of Former Treatments at the MFA and Their Consequences. JAIC 2003, 42, 193–236.
  68. Johnson, C.; Head, K.; Green, L. The Conservation of a Polychrome Egyptian Coffin. Stud. Conserv. 1995, 40, 73–81.
  69. Cappitelli, F.; Zanardini, E.; Sorlini, C. The Biodeterioration of Synthetic Resins Used in Conservation. Macromol. Biosci. 2004, 4, 399–406.
  70. Ellis, J.L.; Ball, A. Comparison of Two Wood Filler Types with Respect to Relative Shrinkage across Variations in Temperature, in Humidity and within Wood Species. Int. Wood Prod. J. 2011, 2, 115–119.
  71. Bentley, J. 2—Organic film formers. In Paint and Surface Coatings, 2nd ed.; Lambourne, R., Strivens, T.A., Eds.; Woodhead Publishing Series in Metals and Surface Engineering; Woodhead Publishing: Cambridge, UK, 1999; pp. 19–90. ISBN 978-1-85573-348-0.
  72. Crisci, G.M.; La Russa, M.F.; Malagodi, M.; Ruffolo, S.A. Consolidating Properties of Regalrez 1126 and Paraloid B72 Applied to Wood. J. Cult. Herit. 2010, 11, 304–308.
  73. May, C. Epoxy Resins: Chemistry and Technology; Routledge: Oxfordshire, UK, 2018.
  74. Fox, M. Searching for the Filler of My Dreams—An Odyssey in Gaps and Glues. J. Vertebr. Paleontol. 2001, 21, 51A. Available online: (accessed on 10 April 2021).
  75. Ellis, L.; Heginbotham, A. An Evaluation of Four Barrier-Coating and Epoxy Combinations in the Structural Repair of Wooden Objects. J. Am. Inst. Conserv. 2004, 43, 23–37.
  76. Pamic, R.; Pohleven, F. Protection through Construction of a Wooden Monument in Radomlje (Slovenia). Drewno Prace Nauk. Doniesienia Komun. 2015, 58.
  77. Santamaria-Echart, A.; Fernandes, I.; Barreiro, F.; Corcuera, M.A.; Eceiza, A. Advances in Waterborne Polyurethane and Polyurethane-Urea Dispersions and Their Eco-Friendly Derivatives: A Review. Polymers 2021, 13, 409.
  78. Brzeska, J.; Tercjak, A.; Sikorska, W.; Mendrek, B.; Kowalczuk, M.; Rutkowska, M. Degradability of Polyurethanes and Their Blends with Polylactide, Chitosan and Starch. Polymers 2021, 13, 1202.
  79. Członka, S.; Kairytė, A.; Miedzińska, K.; Strąkowska, A.; Adamus-Włodarczyk, A. Mechanically Strong Polyurethane Composites Reinforced with Montmorillonite-Modified Sage Filler (Salvia officinalis L.). Int. J. Mol. Sci. 2021, 22, 3744.
  80. Randall, D.; Lee, S. The Polyurethanes Book; Wiley-Blackwell: Hoboken, NJ, USA, 2002.
  81. Alinejad, M.; Henry, C.; Nikafshar, S.; Gondaliya, A.; Bagheri, S.; Chen, N.; Singh, S.K.; Hodge, D.B.; Nejad, M. Lignin-Based Polyurethanes: Opportunities for Bio-Based Foams, Elastomers, Coatings and Adhesives. Polymers 2019, 11, 1202.
  82. Xu, Z.; Tang, X.; Gu, A.; Fang, Z. Novel Preparation and Mechanical Properties of Rigid Polyurethane Foam/Organoclay Nanocomposites. J. Appl. Polym. Sci. 2007, 106, 439–447.
  83. Soldenhoff, B. Zastosowanie Sztywnych Pianek Poliuretanowych do Uzupełniania Ubytków Drewna w Obiektach Zabytkowych. Acta Univ. Nicolai Copernic. Nauk. Humanist. Spo/Lecz. Zabytkozn. I Konserw. 1979, 7, 145–153.
  84. Buchheit, R.G. 18—Corrosion Resistant Coatings and Paints. In Handbook of Environmental Degradation of Materials, 2nd ed.; Kutz, M., Ed.; William Andrew Publishing: Oxford, UK, 2012; pp. 539–568. ISBN 978-1-4377-3455-3.
  85. Robeyns, C.; Picard, L.; Ganachaud, F. Synthesis, Characterization and Modification of Silicone Resins: An “Augmented Review”. Prog. Org. Coat. 2018, 125, 287–315.
  86. Broda, M.; Dąbek, I.; Dutkiewicz, A.; Dutkiewicz, M.; Popescu, C.-M.; Mazela, B.; Maciejewski, H. Organosilicons of Different Molecular Size and Chemical Structure as Consolidants for Waterlogged Archaeological Wood—A New Reversible and Retreatable Method. Sci. Rep. 2020, 10, 1–13.
  87. Barclay, R.L.; Grattan, D.W. A Silicone Rubber/Microballoon Mixture for Gap Filling in Wooden Objects. In Proceedings of the ICOM Committee for Conservation: 8th Triennial Meeting, Sydney, Australia, 6–11 September 1987; Preprints. Volume 1, pp. 183–187.
More