Browse by Subjects
Extraction Techniques in Sample Preparation
Page Size:
Topic review
Updated time: 22 Jun 2021
Submitted by: Joselito Quirino
Definition: Alkenylbenzenes are potentially toxic (genotoxic and carcinogenic) compounds present in plants such as basil, tarragon, anise star and lemongrass. These plants are found in various edible consumer products, e.g., popularly used to flavour food. Thus, there are concerns about the possible health consequences upon increased exposure to alkenylbenzenes especially due to food intake. It is therefore important to constantly monitor the amounts of alkenylbenzenes in our food chain.
Topic review
Updated time: 30 Apr 2021
Submitted by: Anurag Malik
Definition: All the research pertaining to the detection and identification of minute peptides (<4 amino acids) present in multifarious mixtures are in their early stages because of a lack of stringent peptide identification methodologies. Precise amendments like discerned censoring of ions against previously identified sequences of peptides can help overcome the aforementioned issues faced at times of optimization procedures during or after MS analysis. A state-of-the-art genesis in structure-informedpeptide identification and quantification methodologies can be guaranteed by added enrichment in the sensitivity and resolving capacity of MS, in conjunction with novel cutting edge ionization techniques. Modernization of the software for foodomics and peptidomics research and peptide identification is needed. Also, explicit and coherent structure identification in common and especially in synchronization with LC-MS requires significant attention. A continuous focus will be given to understanding of the biochemical functions of milk ingredients and their dietary implications by using a variety of powerful tools like -omics, cell models, gut microbiome research and imaging. The introduction of innovative facilities including is an absolute requirement for the development of approaches, such as proteomics, recombinant enzymes and microbial fermentation to study and improve the metabolic and health consequences of the various roles of bioactive peptides throughout the expression of genes. Consequently, the formulation of products incorporating bioactive peptides should examine the allergenicity, toxicity and stability of the a ected metabolic functions during gastrointestinal digestion. Despite considerable progress in the isolation, purification and assessment of bioactivities of BP from various natural sources, several hurdles still remain to be overcome, particularly technological advancements to produce them on a broad scale without losing activity. In conclusion, milk-derived bioactive peptides o er substantial future prospects for product development to support health, with their multifunctional assets.
Topic review
Updated time: 20 Oct 2020
Submitted by: Michael Schoening
Definition: Electrolyte-insulator-semiconductor (EIS) field-effect sensors belong to a new generation of electronic chips for biochemical sensing, enabling a direct electronic readout. The review gives an overview on recent advances and current trends in the research and development of chemical sensors and biosensors based on the capacitive field-effect EIS structure—the simplest field-effect device, which represents a biochemically sensitive capacitor. Fundamental concepts, physicochemical phenomena underlying the transduction mechanism and application of capacitive EIS sensors for the detection of pH, ion concentrations, and enzymatic reactions, as well as the label-free detection of charged molecules (nucleic acids, proteins, and polyelectrolytes) and nanoparticles, are presented and discussed.
Updated time: 19 Mar 2021
Submitted by: Francisco Cruz-Sosa
Abstract: Eysenhardtia platycarpa (Fabaceae) is a medicinal plant used in Mexico. Biotechnological studies of its use are lacking. The objective of this work was to establish a cell suspension culture (CSC) of E. platycarpa, determine the phytochemical constituents by spectrophotometric and gas chromatography‒mass spectrometry (GC‒MS) methods, evaluate its antifungal activity, and compare them with the intact plant. Friable callus and CSC were established with 2 mg/L 1-naphthaleneacetic acid plus 0.1 mg/L kinetin. The highest total phenolics of CSC was 15.6 mg gallic acid equivalents (GAE)/g dry weight and the total flavonoids content ranged from 56.2 to 104.1 µg quercetin equivalents (QE)/g dry weight. The GC‒MS analysis showed that the dichloromethane extracts of CSC, sapwood, and heartwood have a high amount of hexadecanoic acid (22.3–35.3%) and steroids (13.5–14.7%). Heartwood and sapwood defatted hexane extracts have the highest amount of stigmasterol (~23.4%) and β-sitosterol (~43%), and leaf extracts presented β-amyrin (16.3%). Methanolic leaf extracts showed mostly sugars and some polyols, mainly D-pinitol (74.3%). Compared with the intact plant, dichloromethane and fatty hexane extracts of CSC exhibited percentages of inhibition higher for Sclerotium cepivorum: 71.5% and 62.0%, respectively. The maximum inhibition for Rhizoctonia solani was with fatty hexane extracts of the sapwood (51.4%). Our study suggests that CSC extracts could be used as a possible complementary alternative to synthetic fungicides.
Updated time: 15 Jan 2021
Submitted by: Camila Xu
Sample preparation is and always will be the most important step in chemical analysis. Numerous techniques, methods, methodologies, and approaches are available in the literature, offering a wide range of analytical tools to the lab practitioner. Analytical scientists all over the world must deal with the development of protocols for a plethora of analytes in various sample matrices. Extraction techniques, either sorbent or solvent-based, provide the necessary tools to handle the sample in such a way that all its information can be revealed, exploiting all advantages of instrumentation to the fullest and prolonging the lifetime of the instrument for seamless operation. In the last decade, advances in sample pretreatment are following green chemistry and green analytical chemistry demands, focusing on miniaturization and automation as well as by using the least possible amount of organic solvents. The question, then, is how far have we come now and what are the future perspectives? This webinar provides a short introduction to sample preparation and include selective presentation of three state-of-the-art, representative extraction techniques: solid phase extraction, fabric phase sorptive extraction, and paper-based sorptive extraction.
Topic review
Updated time: 10 Feb 2021
Submitted by: Victoria Samanidou
Definition: Deep eutectic solvents (DESs), were introduced in 2001 as an alternative to ILs. These showed a stronger ecofriendly profile, with easier and cheaper production, while having similar properties. DESs contain large, asymmetrical ions that have low lattice energy and, thus, low melting points. They are often acquired by the complexation of a quaternary ammonium salt with a metal salt or hydrogen bond donor (HBD). The charge delocalization occurring through hydrogen bonding between, for instance a halide ion and the hydrogen-donor moiety, is responsible for the decrease in the melting point of the mixture, in relation to the melting points of the individual components. Since 2001, many scientists around the globe pursed the utilization of DESs and published a variety of studies. The use of DESs in analytical microextraction techniques is on the rise, due to the many benefits they provide, such as lower cost and easier synthesis than ILs and an environmentally friendly profile, because of the low toxicity reported, although they need further investigation. To this day, the number of HBAs and HBDs is quite limited, so more studies ought to be carried out to present a plethora of DESs available for use. Moreover, DESs are not commercially available yet, substantially affecting and further limiting their usage for routine analyses in industrial or certified laboratories. The extraordinary high relative recoveries, selectivity, low LODs and decent repeatability they offer, render them appropriate for the determination and quantification of lots of compounds in either simple or complex matrices. As seen, most applications regard liquid phase microextractions rather than solid phase microextractions, because of their liquid nature, as it is simpler to use them as supporting solid adsorbents. The fact that the sample preparation of complicated matrices is of high interest makes them ideal for the research. Hopefully, DESs will be available for purchase in the foreseeable future and will replace organic solvents in some analytical methods commonly used nowadays, while more studies are carried out about their properties. Our aim in this review will be towards the use of DESs in analytical extraction and microextraction techniques, while briefly presenting some frequently used DESs, their synthesis methods and their properties. The ever-increasing use of deep eutectic solvents (DES) in microextraction techniques will be discussed, focusing on the reasons needed to replace conventional extraction techniques with greener approaches that follow the principles of green analytical chemistry.
Topic review
Updated time: 03 Nov 2020
Submitted by: Marina Dobrovolskaia
Definition: This entry provides a comprehensive review of the current literature about biological properties and available methods for the detection of beta-glucans. It shares the experience of the Nanotechnology Characterization Laboratory with the detection of beta-glucans in nanotechnology-based drug products. This entry summarizes and discusses five different approaches currently applied for the data interpretation of beta-glucan tests with respect to the acceptability (or lack thereof) of the beta-glucan levels in pharmaceutical products.
Topic review
Updated time: 14 Jan 2021
Definition: Effervescence-assisted microextraction emerged in 2011 as a new alternative in this context. The technique uses in situ-generated carbon dioxide as the disperser, and it has been successfully applied in the solid-phase and liquid-phase microextraction fields. This minireview explains the main fundamentals of the technique, its potential and the main developments reported.
Topic review
Updated time: 23 Jul 2021
Definition: Endometrial infections are a common cause of reproductive loss in cattle. Accurate diagnosis is important to reduce the economic losses caused by endometritis. A range of sampling procedures have been developed which enable collection of endometrial tissue or luminal cells or uterine fluid. However, as these are all invasive procedures, there is a risk that sampling around the time of breeding may adversely affect subsequent pregnancy rate.
Topic review
Updated time: 28 Oct 2020
Submitted by: Victoria Samanidou
Definition: Sample preparation is the most crucial step in the analytical procedure designed for implementation in any analytical application (food analysis, bionalysis, forensics, toxicology, environmental monitoring etc). It is the limiting factor in chemical analysis since it is time consuming and it can potentially introduce errors. No one can doubt that the best approach would be the direct introduction of the sample to the instrument, however this is rarely feasible. Efficient sample pretreatment is inevitably required as the instrument technology has produced highly sophisticated and sensitive analytical equipment. Hence, the analytical scientists have to develop and apply a suitable sample preparation protocol that ensures that the composition of the sample remains unchanged, no impurities are introduced during handling, all interferences have been left back, the analytes’ concentration is not only at detectable levels, but it can also be quantified precisely and accurately and that the matrix of the sample is compatible with the analytical technique. Extraction techniques are the most powerful tool in hands of the analytical chemists and lab practitioners. Either sorbent based or solvent based, extraction techniques provide the necessary tool that can be used to handle the sample in a way that all information in it can be revealed, all advantages in instrumentation have been exploited to the fullest and the lifetime of the instrument is prolonged in a seamless operation mode.
  • Page
  • of
  • 3