Topic Review
Space Vector PWM Techniques
This entry elaborates the basic concept of space vector Pulse Width modulation technique for a three-phase voltage source inverter. Why space vector Pulse width modulation (PWM) is required and how it is implemented in the simulation model, is described in the entry.  A number of PWM scheme is used to obtain variable voltage and frequency supply from a power converter. The most widely used PWM schemes for three-phase voltage source inverter (VSI) are carrier-based sinusoidal PWM and space vector PWM (SVPWM). There is an increasing trend of using space vector PWM (SVPWM) because of their easier digital realization and better dc bus utilization. This entry focuses on step by step development of MATLAB/SIMULINK model of SVPWM. Firstly the model of a three-phase VSI is discussed based on space vector representation. Next simulation model of SVPWM is obtained using MATLAB/SIMULINK. Simulation results are also provided. 
  • 18926
  • 16 Jun 2022
Topic Review
Modular Multilevel Converters
A modular multilevel converter (MMC) is an advanced voltage source converter applicable to a wide range of medium and high-voltage applications. It has competitive advantages such as quality output performance, high modularity, simple scalability, and low voltage and current rating demand for the power switches. The generalized configuration of a three-phase MMC is comprised of a DC terminal, an AC terminal, and a converting kernel involving three phase legs. Each leg/phase has two symmetric arms referred to as the upper arm and lower arm. The upper arm and lower arm contain a group of identical submodules connected in series together with a chock inductor to suppress high-frequency components in the arm current.  The research interests of MMCs are primarily associated with the topologies, mathematical modeling, output voltage and current control, submodule balancing control, circulating current control, and modulation methods. And the incorporation of wideband gap (WBG) semiconductors are prospected to facilitate the MMC application with further advantages of high-voltage and high-power operations, low power losses, high efficiency, improved reliability, and reduced module size and cooling system.
  • 7363
  • 18 Aug 2021
Topic Review
TCP-based Congestion Control Algorithms
In today’s data networks, the main protocol used to ensure reliable communications is the transmission control protocol (TCP). The TCP performance is largely determined by the used congestion control (CC) algorithm, which main purpose is to avoid the congestion of the network that can be caused by a large burst of data traffic. TCP CC algorithms have evolved over the past three decades and a large number of CC algorithm variations have been developed to accommodate various communication network environments. Considering the importance of CC in communication networks, the fundamentals of the TCP as the main transport layer protocol and CC process have been explained in detail. Also, an encyclopedic overview of the most popular single-flow and multi-flow TCP CC algorithms with corresponding alternatives has been present. Future directions in the possible improvement of CC algorithms for implementation in complex heterogeneous networks composed of wired and wireless elements are lastly discussed in this encyclopedic work. 
  • 6166
  • 21 Jul 2021
Topic Review
Power Electronic Switches
As the need for green and effective utilization of energy continues to grow, the advancements in the energy and power electronics industry are constantly driven by this need, as both industries are intertwined for obvious reasons. The developments in the power electronics industry has over the years hinged on the progress of the semiconductor device industry. The semiconductor device industry could be said to be on the edge of a turn into a new era, a paradigm shift from the conventional silicon devices to the wide band gap semiconductor technologies. While a lot of work is being done in research and manufacturing sectors, it is important to look back at the past, evaluate the current progress and look at the prospects of the future of this industry. This paper is unique at this time because it seeks to give a good summary of the past, the state-of-the-art, and highlight the opportunities for future improvements. A more or less ‘forgotten’ power electronic switch, the four-quadrant switch, is highlighted as an opportunity waiting to be exploited as this switch presents a potential for achieving an ideal switch.
  • 3442
  • 29 Dec 2020
Topic Review
Maharashtra Energy System
The demand for energy across the world has been increasing in recent years due to the rapid growth of the population, including in India. This work examined the progress of non-conventional energy in Maharashtra state in detail.
  • 3428
  • 28 Oct 2020
Topic Review
400 kV Double-Circuit Transmission Lines
A high-voltage AC double-circuit 400 kV overhead power transmission line runs from the city of Elk (Poland) to the city of Alytus (Lithuania). This international 400 kV power transmission line is potentially one of the strongest magnetic field-generating sources in the area. This 400 kV voltage double-circuit overhead transmission line and its surroundings were analyzed using the mathematical analytical methods of superposition and reflections. This research paper includes the calculation of the numerical values of the magnetic field and its distribution. The research showed that the values of the magnetic field strength near the international 400 kV power transmission line exceed the threshold values permitted by relevant standards. This overhead power line is connected to the general (50 Hz) power system and generates a highly intense magnetic field. It is suggested that experimental trials should be undertaken in order to determine the maximum values of the magnetic field strength. For the purpose of mitigating these values, it is suggested that the height of the support bars should be increased or that any individual and commercial activities near the object under investigation should be restricted.
  • 2934
  • 20 Apr 2021
Topic Review
Physical Unclonable Function
A Physical Unclonable Function (PUF) is hardware that acts as a one-way function, whose each different instance provides unique outputs for the same distinct input. Although recent research has demonstrated the merits of PUFs as security primitives for resource-constrained computer systems, better implementations of them need to be identified by future research, in order for them to be commercially adopted. Nevertheless, PUFs have already found application in the implementation of a large number of cryptographic protocols and other security solutions. A number of well-known metrics have been proposed in the literature in order to assess the quality of individual PUF implementations as security mechanisms, in terms of the stability, uniqueness and randomness of their responses.
  • 2064
  • 01 Nov 2020
Topic Review
Applications of Wireless Sensor Networks
A Wireless Sensor Network (WSN) is a group of spatially dispersed sensor nodes, which are interconnected by using wireless communication. The purpose of this entry is to provide an up-to-date presentation of both traditional and most recent applications of WSNs and hopefully not only enable the comprehension of this scientific area but also facilitate the perception of novel applications.
  • 2049
  • 28 Mar 2022
Topic Review
Gallium Nitride High-Electron-Mobility Transistor
In recent years, GaN-based devices have been widely used in a variety of application fields. GaN-based high-electron-mobility transistors (HEMTs) are superior to conventional silicon (Si) based devices in terms of switching frequency, power rating, thermal capability and efficiency, which are crucial factors to enhance the performances of advanced power converters. This paper addresses some fundamental issues concerning intrinsic features of GaN material and key technology in practical application of GaN-based power switching devices.
  • 1984
  • 30 Jul 2020
Topic Review
Microgrid Applications
Microgrids need control and management at different levels to allow the inclusion of renewable energy sources. In this paper, a comprehensive literature review is presented to analyse the latest trends in research and development referring to the applications of predictive control in microgrids. As a result of this review, it was found that the application of predictive control techniques on microgrids is performed for the three control levels and with adaptations of the models in order to include uncertainties to improve their performance and dynamics response. In addition, to ensure system stability, but also, at higher control levels, coordinated operation among the microgrid’s components and synchronised and optimised operation with utility grids and electric power markets. Predictive control appears as a very promising control scheme with several advantages for microgrid applications of different control levels.
  • 1933
  • 28 Oct 2020
  • Page
  • of
  • 47
Top
Feedback