Topic Review
Lead–Acid Battery Faults
Lead–acid battery technology has been effectively fulfilling a variety of energy needs, ranging from classic car industry requirements to current plug-in hybrid electric vehicle requirements through any stationary system. Depending on the operating conditions, the battery can be affected in many ways. The same deterioration mechanisms affect all types of lead–acid batteries but to varying degrees. Two electrodes with the aqueous H2SO4 electrolyte (sulfuric acid) and the terminals are the main components of a lead–acid battery. A grid and the active material—PbO2 as the positive active material and Pb as the negative active material—make up the electrodes.
  • 128
  • 05 Mar 2024
Topic Review
Photovoltaic Integration with the Saudi Electricity Grid
Due to uncertain photovoltaic (PV) power generation, analyzing the voltage stability of transmission networks with a large PV plant is challenging. The stability of PV output power is a critical factor in establishing PV penetration levels in active transmission networks when assessing loading capabilities. 
  • 63
  • 29 Feb 2024
Topic Review
Edge Intelligent with Internet of Things
Internet of Things (IoT) connects various industrial actuators, devices, and people at work. IoT provide additional insight into industrial applications, as well as minimize human labour and time and create a path for Industry 4.0.
  • 61
  • 29 Feb 2024
Topic Review
Smart Grid Security
In Internet of Things-based smart grids, smart meters record and report a massive number of power consumption data at certain intervals to the data center of the utility for load monitoring and energy management. Energy theft is a big problem for smart meters and causes non-technical losses.
  • 50
  • 28 Feb 2024
Topic Review
BESS Performance in Providing Various Electricity Market Services
The Battery Energy Storage System (BESS) is one of the possible solutions to overcoming the non-programmability associated with these energy sources. The capabilities of BESSs to store a consistent amount of energy and to behave as a load by releasing it ensures an essential source of flexibility to the power system.
  • 80
  • 28 Feb 2024
Topic Review
Evolving Paradigms in Economic Dispatch
Economic Dispatch Problems (EDP) refer to the process of determining the power output of generation units such that the electricity demand of the system is satisfied at a minimum cost while technical and operational constraints of the system are satisfied. This procedure is vital in the efficient energy management of electricity networks since it can ensure the reliable and efficient operation of power systems. As power systems transition from conventional to modern ones, new components and constraints are introduced to power systems, making the EDP increasingly complex. This highlights the importance of developing advanced optimization techniques that can efficiently handle these new complexities to ensure optimal operation and cost-effectiveness of power systems. 
  • 71
  • 27 Feb 2024
Topic Review
Applications of Optical Sensors in CMOS
CMOS (complementary metal-oxide semiconductor)  technology allows integration with the CMOS readout and control electronics in the same microdevice, featuring high-volume fabrication with high-reproducibility and low-cost. Optical sensors in CMOS are being used extensively in the medical field as a key element in spectroscopy analysis. More specifically, they have been a great advance in the detection of gastrointestinal dysplasia and in the studies of Malaria infection. Furthermore, they have been applied in labs-on-a-chip and, more recently, in organs-on-a-chip devices and X-ray imaging. Optical sensors in CMOS are also promising solutions for other types of applications such as, for example, in photovoltaic (PV) sub-modules to measure the angles of incident light in the PV panels.
  • 70
  • 27 Feb 2024
Topic Review
Energy Management Systems in Microgrids
Microgrids usually employ distributed energy resources such as wind turbines, solar photovoltaic modules, etc. When multiple distributed generation resources with different features are used in microgrids, managing these resources becomes an important problem. The generated power of solar photovoltaic modules and wind turbines used in microgrids is constantly changing with solar irradiation and wind speed. Due to this impermanent and uncertain nature of renewable energy resources, generally, energy storage systems are employed in microgrid systems. To control the distributed energy resources and energy storage units and sustain the supply and demand balance within the microgrid and provide sustainable and reliable energy to the loads, energy management systems are used. Many methods are used to realize and optimize energy management in microgrids. 
  • 120
  • 26 Feb 2024
Topic Review
Telehealth Rehabilitation
Due to damage to the network of nerves that regulate the muscles and feeling in the shoulder, arm, and forearm, brachial plexus injuries (BPIs) are known to significantly reduce the function and quality of life of affected persons. According to the World Health Organization (WHO), a considerable share of global disability-adjusted life years (DALYs) is attributable to upper limb injuries, including BPIs. Telehealth can improve access concerns for patients with BPIs, particularly in lower-middle-income nations.
  • 60
  • 22 Feb 2024
Topic Review
Topology and Symmetry Analysis of Power Converters
Power converters can convert the electrical energy output by power source into specific forms required by target device. They are widely used in various fields such as electrification, transportation, and power systems, and are the core components of the systems. “Symmetry” means “the quality of being very similar or equal” or “the exact match in size and shape between two halves, parts or sides of something”. Symmetry is an important attribute of power converters. Whether it is a two-level, three-level, or multi-level converter, they all have a certain symmetry in structure, which is referred to as "Topological Symmetry of Power converters". This topological symmetry means that the voltage/current output from each phase of the converter are also symmetrical, with only a specific phase angle difference. Studying this symmetry is helpful for the design, operation analysis, and fault diagnosis of power converters.
  • 88
  • 19 Feb 2024
  • Page
  • of
  • 99