Topic Review
Energy Management Strategy
A Comprehensive Review on Classification, Energy Management Strategy, and Control Algorithm for Hybrid Electric Vehicles
  • 2867
  • 22 Oct 2020
Topic Review
A Low-Cost, Flexible Pressure Capacitor Sensor using Polyurethane for Wireless Vehicle Detection
Detection of vehicles on the road can contribute to the establishment of an intelligent transportation management system to allow smooth transportation and the reduction of road accidents. Thus far, an efficient and low-cost polymer flexible pressure sensor for vehicle detection is lacking. This paper presents a flexible sensor for vehicle sensing and demonstrates a wireless system for monitoring vehicles on the road. A vehicle sensor is fabricated by sandwiching a polyurethane material between Aluminum top/bottom electrodes. The sensing mechanism is based on changes in capacitance due to variation in the distance between the two electrodes at an applied external pressure. A clear response against a pressure load of 0.65 Mpa is observed, which is the same pressure as that of the car tire area in contact with the road. Significantly, the sensor is easy to embed on the road line due to its mechanical flexibility and large size. A field test is carried out by embedding the sensor on the road and crossing the sensor with a car. Moreover, the signal displayed on the tablet indicates that the sensing system can be used for wireless detection of the axle, speed, or weight of the vehicle on the road. The findings suggest that the flexible pressure sensor is a promising tool for use as a low-cost vehicle detector in future intelligent transportation management.
  • 1314
  • 28 Oct 2020
Topic Review
Bus Scheduling with Evolutionary Optimization
In public transport operations, vehicles tend to bunch together due to the instability of passenger demand and traffic conditions. Fluctuation of the expected waiting times of passengers at bus stops due to bus bunching is perceived as service unreliability and degrades the overall quality of service. For assessing the performance of high-frequency bus services, transportation authorities monitor the daily operations via Transit Management Systems (TMS) that collect vehicle positioning information in near real-time. This work explores the potential of using Automated Vehicle Location (AVL) data from the running vehicles for generating bus schedules that improve the service reliability and conform to various regulatory constraints. The computer-aided generation of optimal bus schedules is a tedious task due to the nonlinear and multi-variable nature of the bus scheduling problem. For this reason, this work develops a two-level approach where (i) the regulatory constraints are satisfied and (ii) the waiting times of passengers are optimized with the introduction of an evolutionary algorithm. This work also discusses the experimental results from the implementation of such an approach in a bi-directional bus line operated by a major bus operator in northern Europe.
  • 777
  • 29 Oct 2020
Topic Review
End-of-Life Vehicles Recycling
End-of-life vehicle (ELV) recycling is a process that spends energy and could be an energy source as well. This part of energy recovering depends on many different factors related to the broad and local aspects of ELV recycling. The ELV recycling process is consuming energy from different energy sources (electrical, fossil), however, this consumption is lower in relation to energy consumption during the production of new vehicle parts from the very beginning. ELVs have, in the first phase, been considered as an environmental problem, which must be solved through many decision-making approaches, directives, and standards. Accordingly, it may be concluded, that this issue is very complex since it includes a lot of relations concerning ELV recycling, as well as broad infrastructure and socio-economic environment factors. On the other hand, there is not enough relevant and reliable information related to the ELV recycling and energy recovery through ELV recycling process. This information can be obtained through user responses, financial analysis, business analysis, or some government body relevant information sources. Due to new regulations related to ELV recycling, the responsibility of manufacturers is becoming increasingly important. They are obligated to design and revise their processes and adapt them to new legislation norms.
  • 715
  • 26 Oct 2020
Topic Review
Early Injection for Low Emissions
Low-emission and high-efficiency have always been the targets for Internal Combustion Engine development. For diesel engines, homogeneous charge (aka. HCCI) and premixed charge (aka. PCCI) combustion modes provide both low-emission and high-efficiency simultaneously. To achieve these advanced combustion modes, early injection is needed as a relatively longer air-fuel mixing time is guaranteed. Several key parameters, such as the injection timing, pressure, angle, directly determine the final combustion process and thus the emission and efficiency performance. The pros and cons of these key parameters are discussed in detail here to provide a good review of the early-injection strategy.
  • 587
  • 28 Oct 2020
Topic Review
Resistance of PVD Coatings
Due to the increasing maintenance costs of hydraulic machines related to the damages caused by cavitation erosion and/or erosion of solid particles, as well as in tribological connections, surface protection of these components is very important. Up to now, numerous investigations of resistance of coatings, mainly nitride coatings, such as CrN, TiN, TiCN, (Ti,Cr)N coatings and multilayer TiN/Ti, ZrN/CrN and TN/(Ti,Al)N coatings, produced by physical vapor deposition (PVD) method using different techniques of deposition, such as magnetron sputtering, arc evaporation or ion plating, to cavitation erosion, solid particle erosion and wear have been made. The results of these investigations, degradation processes and main test devices used are presented in this paper. An effect of deposition of mono- and multi-layer PVD coatings on duration of incubation period, cumulative weight loss and erosion rate, as well as on wear rate and coefficient of friction in tribological tests is discussed. It is shown that PVD coating does not always provide extended incubation time and/or improved resistance to mentioned types of damage. The influence of structure, hardness, residence to plastic deformation and stresses in the coatings on erosion and wear resistance is discussed. In the case of cavitation erosion and solid particle erosion, a limit value of the ratio of hardness (H) to Young’s modulus (E) exists at which the best resistance is gained. In the case of tribological tests, the higher the H/E ratio and the lower the coefficient of friction, the lower the wear rate, but there are also many exceptions
  • 564
  • 13 Oct 2020
Topic Review
Reversible Hydrogen Storage
In the field of energy storage, recently investigated nanocomposites show promise in terms of high hydrogen uptake and release with enhancement in the reaction kinetics. Among several, carbonaceous nanovariants like carbon nanotubes (CNTs), fullerenes, and graphitic nanofibers reveal reversible hydrogen sorption characteristics at 77 K, due to their van der Waals interaction. The spillover mechanism combining Pd nanoparticles on the host metal-organic framework (MOF) show at room temperature uptake of hydrogen. Metal or complex hydrides either in the nanocomposite form and its subset, nanocatalyst dispersed alloy phases illustrate the concept of nanoengineering and nanoconfinement of particles with tailor-made properties for reversible hydrogen storage. Another class of materials comprising polymeric nanostructures such as conducting polyaniline and their functionalized nanocomposites are versatile hydrogen storage materials because of their unique size, high specific surface-area, pore-volume, and bulk properties. The salient features of nanocomposite materials for reversible hydrogen storage are reviewed and discussed.
  • 513
  • 22 Jul 2020
Topic Review
Diamond-Like Carbon Films
Diamond-like carbon (DLC) films have been extensively applied in industries owing to their excellent characteristics such as high hardness. In particular, there is a growing demand for their use as protective films for mechanical parts owing to their excellent wear resistance and low friction coefficient. DLC films have been deposited by various methods and many deviate from the DLC regions present in the ternary diagrams proposed for sp3 covalent carbon, sp2 covalent carbon, and hydrogen. Consequently, redefining the DLC region on ternary diagrams using DLC coatings for mechanical and electrical components is urgently required. Therefore, we investigate the sp3 ratio, hydrogen content, and other properties of 74 types of amorphous carbon films and present the classification of amorphous carbon films, including DLC. We measured the sp3 ratios and hydrogen content using near-edge X-ray absorption fine structure and Rutherford backscattering-elastic recoil detection analysis under unified conditions. Amorphous carbon films were widely found with nonuniform distribution. The number of carbon atoms in the sp3 covalent carbon without bonding with hydrogen and the logarithm of the hydrogen content were inversely proportional. Further, we elucidated the DLC regions on the ternary diagram, classified the amorphous carbon films, and summarized the characteristics and applications of each type of DLC.
  • 508
  • 28 Sep 2021
Topic Review
3D Printing
Three-dimensional (3D) printing technology holds great potential to fabricate complex constructs in the field of regenerative medicine. Researchers in the surgical fields have used 3D printing techniques and their associated biomaterials for education, training, consultation, organ transplantation, plastic surgery, surgical planning, dentures, and more. In addition, the universal utilization of 3D printing techniques enables researchers to exploit different types of hardware and software in, for example, the surgical fields. To realize the 3D-printed structures to implant them in the body and tissue regeneration, it is important to understand 3D printing technology and its enabling technologies.
  • 506
  • 20 Apr 2021
Topic Review
Prof. Sergio Saponara
Sergio Saponara is an Italian scientist, engineer and entrepreneur, active in the fields of electronics and automotive engineer. 
  • 498
  • 28 Oct 2020
  • Page
  • of
  • 7
Top