Topic Review
Black Ginseng
Black ginseng is a processed ginseng which prepared by  steaming and drying of white or red ginseng  for several times (usually 9). This process resulting in extensive changes in types and amounts of several secondary metabolites. Thus, primary ginsenosides (the main active inredients in ginseng) were transformed into less polar derivatives by steaming. In addition, apparent changes happened to other secondary metabolites such as the increasing  of phenolic compounds, reducing sugars and acidic polysaccharides as well as the decrease in concentrations of free amino acids and total polysaccharides. Furthermore, the presence of some Maillard reaction products like maltol was also engaged. These obvious chemical changes were associated with a noticeable superiority for black ginseng over white and red ginseng in most of the comparative biological studies including anticarcinogenic, immunomodulatory, anti-Inflammatory, antidiabetic, hepatoprotective, antioxidant and tonic effects.
  • 4345
  • 30 Oct 2020
Topic Review
Algal Evolution
Phylogenetically algae is regarded as polyphyletic as its origin cannot be traced back to single common hypothetical ancestor. However, genomic studies on algae suggest that algae evolved through endosymbiosis giving rise to at least eight to nine phyla over a period of time.
  • 2832
  • 25 Nov 2020
Topic Review
Protein dynamics
Protein dynamics is a highly complex phenomenon comprising numerous contributions from motions with different mechanisms of action and happening with diverse timescales and amplitudes that highly depend on the system and the local environment.
  • 2232
  • 01 Nov 2020
Topic Review
G protein-coupled receptor in hepatocytes
G protein-coupled receptors (GPCRs) are cell surface receptors that mediate the function of extracellular ligands. Understanding how GPCRs work at the molecular level has important therapeutic implications, as 30-40% of the drugs currently in clinical use mediate therapeutic effects by acting on GPCRs. Like many other cell types, hepatocyte's function is regulated by GPCRs. A better understanding of the metabolic role of GPCRs in hepatocytes, the dominant constituent cells of the liver, could lead to the development of novel drugs that are clinically useful for the treatment of various metabolic diseases, including Type 2 diabetes, NAFLD, and NASH. 
  • 1568
  • 06 Nov 2020
Topic Review
Aquaporin Inhibitors
Aquaporins (AQPs) are water channel proteins that are essential to life, being expressed in all kingdoms. In humans, there are 13 AQPs, at least one of which is found in every organ system. The structural biology of the AQP family is well-established and many functions for AQPs have been reported in health and disease. AQP expression is linked to numerous pathologies including tumor metastasis, fluid dysregulation, and traumatic injury. The targeted modulation of AQPs therefore presents an opportunity to develop novel treatments for diverse conditions. Various techniques such as video microscopy, light scattering and fluorescence quenching have been used to test putative AQP inhibitors in both AQP-expressing mammalian cells and heterologous expression systems. The inherent variability within these methods has caused discrepancy and many molecules that are inhibitory in one experimental system (such as tetraethylammonium, acetazolamide, and anti-epileptic drugs) have no activity in others. Some heavy metal ions (that would not be suitable for therapeutic use) and the compound, TGN-020, have been shown to inhibit some AQPs. Clinical trials for neuromyelitis optica treatments using anti-AQP4 IgG are in progress. However, these antibodies have no effect on water transport. More research to standardize high-throughput assays is required to identify AQP modulators for which there is an urgent and unmet clinical need.
  • 1544
  • 06 Sep 2021
Topic Review
Dead Cas Systems
The gene editing tool CRISPR-Cas has become the foundation for developing numerous molecular systems used in research and, increasingly, in medical practice. In particular, Cas proteins devoid of nucleolytic activity (dead Cas proteins; dCas) can be used to deliver functional cargo to programmed sites in the genome. In this review, we describe current CRISPR systems used for developing different dCas-based molecular approaches and summarize their most significant applications
  • 1526
  • 30 Oct 2020
Topic Review Peer Reviewed
Microchip Electrophoresis
Microchip electrophoresis (MCE) is a miniaturized form of capillary electrophoresis. Electrophoresis is a common technique to separate macromolecules such as nucleic acids (DNA, RNA) and proteins. This technique has become a routine method for DNA size fragmenting and separating protein mixtures in most laboratories around the world. The application of higher voltages in MCE achieves faster and efficient electrophoretic separations. 
  • 1448
  • 13 Apr 2022
Topic Review
Hyaluronic Acid
Hyaluronic acid, as a natural linear polysaccharide, has attracted researchers’ attention from its initial detection and isolation from tissues in 1934 until the present day. Due to biocompatibility and a high biodegradation of hyaluronic acid, it finds wide application in bioengineering and biomedicine: from biorevitalizing skin cosmetics and endoprostheses of joint fluid to polymeric scaffolds and wound dressings. However, the main properties of aqueous polysaccharide solutions with different molecular weights are different. Moreover, the therapeutic effect of hyaluronic acid-based preparations directly depends on the molecular weight of the biopolymer. The present entry collects the information about hyaluronic acid and its original properties. Particular emphasis is placed on the structural, physical and physico-chemical properties of hyaluronic acid in water solutions, as well as their degradability.
  • 1440
  • 31 Aug 2020
Topic Review
Genome-wide association studies (GWAS)
Genome-wide association studies (GWAS) are studies assessing and analyzing either differences or variations in DNA sequences across the human genome to detect genetic risk factors of diseases prevalent within a target population under study.
  • 1350
  • 24 Aug 2020
Topic Review
GPCRs Regulate DNA Integrity
G protein-coupled receptors (GPCRs) and their associated signaling proteins represent one of the most diverse cellular signaling systems involved in both physiological and pathophysiological processes. Aging represents perhaps the most complex biological process in humans and involves a progressive degradation of systemic integrity and physiological resilience. This is in part mediated by age-related aberrations in energy metabolism, mitochondrial function, protein folding and sorting, inflammatory activity, signal transduction fidelity and genomic stability. An increased rate of unrepaired DNA damage is considered to be one of the key ‘hallmarks’ of aging. Over the last two decades our appreciation of the complexity of GPCR signaling systems has expanded their functional signaling repertoire. One such example of this is the incipient role of GPCRs and GPCR-interacting proteins in DNA damage and repair (DDR) mechanisms. Emerging data now suggest that GPCRs could function as stress sensors for intracellular damage such as oxidative stress. Given this role of GPCRs in the DNA damage response process, coupled to the effective history of drug targeting of these receptors, this suggests that one important future activity of GPCR therapeutics is the rational control of DNA damage repair systems.
  • 1310
  • 30 Apr 2021
  • Page
  • of
  • 161
Top