Topic Review
Regenaring Axons and Axon-Glia Interactions
Following an injury, axons of both the central nervous system (CNS) and peripheral nervous system (PNS) degenerate through a coordinated and genetically conserved mechanism known as Wallerian degeneration (WD). Unlike central axons, severed peripheral axons have a higher capacity to regenerate and reinnervate their original targets, mainly because of the favorable environment that they inhabit and the presence of different cell types. Even though many aspects of regeneration in peripheral nerves have been studied, there is still a lack of understanding regarding the dynamics of axonal degeneration and regeneration, mostly due to the inherent limitations of most animal models. In this scenario, the use of zebrafish (Danio rerio) larvae combined with time-lapse microscopy currently offers a unique experimental opportunity to monitor the dynamics of the regenerative process in the PNS in vivo.
  • 402
  • 13 Apr 2021
Topic Review
LncRNAs in Pulmonary Arterial Hypertension
Pulmonary arterial hypertension (PAH) is a debilitating condition of the pulmonary circulatory system that occurs in patients of all ages and if untreated, eventually leads to right heart failure and death.
  • 402
  • 02 Dec 2021
Topic Review
Human iPSC-Derived Astrocytes in Neurological Disorders
Astrocytes, the most-abundant non-neuronal cell population in the central nervous system, play a vital role in these processes. They are involved in various functions in the brain, such as the regulation of synapse formation, neuroinflammation, and lactate and glutamate levels. The development of human-induced pluripotent stem cells (iPSCs) reformed the research in neurodegenerative disorders allowing for the generation of disease-relevant neuronal and non-neuronal cell types that can help in disease modeling, drug screening, and, possibly, cell transplantation strategies.
  • 402
  • 15 Mar 2022
Topic Review
Use of Exosomes for Clinic Aims
There has been a rapid growth in the knowledge of cell-secreted extracellular vesicle functions. They are membrane enclosed and loaded with proteins, nucleic acids, lipids, and other biomolecules. After being released into the extracellular environment, some of these vesicles are delivered to recipient cells; consequently, the target cell may undergo physiological or pathological changes. Thus, extracellular vesicles as biological nano-carriers, have a pivotal role in facilitating long-distance intercellular communication. Understanding the mechanisms that mediate this communication process is important not only for basic science but also in medicine. Indeed, extracellular vesicles are currently seen with immense interest in nanomedicine and precision medicine for their potential use in diagnostic, prognostic, and therapeutic applications.
  • 402
  • 14 Jun 2022
Topic Review
The Role of GRP78 in Cancer Stemness
Cancer stemness is proposed to be the main cause of metastasis and tumor relapse after conventional therapy due to the main properties of cancer stem cells. These include unlimited self-renewal, the low percentage in a cell population, asymmetric/symmetric cell division, and the hypothetical different nature for absorbing external substances. As the mechanism of how cancer stemness is maintained remains unknown, further investigation into the basic features of cancer stemness is required. Many articles demonstrated that glucose-regulated protein 78 (GRP78) plays a key role in cancer stemness, suggesting that this molecule is feasible for targeting cancer stem cells.
  • 402
  • 15 Jul 2022
Topic Review
Biomembranes and Lateral Nanoscale Inhomogeneities
The nanoscale lateral inhomogeneities (nanodomains, NDs) in the lipid bilayer of cellular and model membranes can be divided into two large groups: (i) arising spontaneously and (ii) arising as a result of the influence of external factors (in relation to the components of the lipid bilayer) like other molecules (for example, peptides and proteins), changes in environmental parameters (temperature, degree of hydration, presence of ions, etc. ), curvature of the membranes, etc. Undoubtedly, these processes are interrelated, since in order for a certain type of ND-based DMP to arise in the membrane under the influence of external factors, it is necessary that the undisturbed lipid bilayer itself (including water molecules and ions) is able in principle to spontaneously form such nanoscale structures.
  • 401
  • 25 Jun 2021
Topic Review
Systemic Sclerosis
Systemic sclerosis (SSc) is a connective tissue disease of unknown etiology. SSc causes damage to the skin and various organs including the lungs, heart, and digestive tract, but the extent of the damage varies from patient to patient. The pathology of SSc includes ischemia, inflammation, and fibrosis, but the degree of progression varies from case to case. Many cytokines have been reported to be involved in the pathogenesis of SSc. For example, interleukin-6 is associated with inflammation, and transforming growth factor-β and interleukin-13 are associated with fibrosis. Therapeutic methods to control these cytokines have been proposed; however, which cytokines have a dominant role in SSc might differ depending on the stage of disease progression and the extent of visceral lesions. Therefore, it is necessary to consider the disease state of the patient when an anti-cytokine therapy is conducted.
  • 401
  • 26 Jul 2021
Topic Review
Mitochondria in Maturation of Cardiomyocytes
Cardiomyocytes obtained from pluripotent stem cells (PSCs)differentiation culture are regarded as immature structurally, electrophysiologically, metabolically, and functionally. Mitochondria are organelles responsible for various cellular functions such as energy metabolism, different catabolic and anabolic processes, calcium fluxes, and various signaling pathways. Cells can respond to cellular needs to increase the mitochondrial mass by mitochondrial biogenesis. On the other hand, cells can also degrade mitochondria through mitophagy. Mitochondria are also dynamic organelles that undergo continuous fusion and fission events. 
  • 401
  • 26 Oct 2021
Topic Review
Corneal Regeneration Using Adipose-Derived Mesenchymal Stem Cells
Adipose-derived stem cells are a subtype of mesenchymal stem cell that offers the important advantage of being easily obtained (in an autologous manner) from low invasive procedures, rendering a high number of multipotent stem cells with the potential to differentiate into several cellular lineages, to show immunomodulatory properties, and to promote tissue regeneration by a paracrine action through the secretion of extracellular vesicles containing trophic factors. This secretome is being investigated as a potential source for a cell-free based regenerative therapy for human tissues, which would significantly reduce the involved costs, risks and law regulations, allowing for a broader application in real clinical practice.
  • 401
  • 02 Sep 2022
Topic Review
Sexual Dimorphism in Interstitial Lung Disease
Interstitial lung diseases (ILD) are a group of heterogeneous progressive pulmonary disorders, characterised by tissue remodelling and/or fibrotic scarring of the lung parenchyma. ILD patients experience lung function decline with progressive symptoms, poor response to treatment, reduced quality of life and high mortality. ILD can be idiopathic or associated with systemic or connective tissue diseases (CTD) but idiopathic pulmonary fibrosis (IPF) is the most common form. While IPF has a male predominance, women are affected more greatly by CTD and therefore associated ILDs. The mechanisms behind biological sex differences in these progressive lung diseases remain unclear. However, differences in environmental exposures, variable expression of X-chromosome related inflammatory genes and sex hormones play a role.
  • 402
  • 08 Feb 2023
  • Page
  • of
  • 161
ScholarVision Creations