Topic Review
Two-Phase Fermentation Systems for Microbial Production of Terpenes
Microbial cell factories, renowned for their economic and environmental benefits, have emerged as a key trend in academic and industrial areas, particularly in the fermentation of natural compounds. Among these, plant-derived terpenes stand out as a significant class of bioactive natural products. The large-scale production of such terpenes, exemplified by artemisinic acid—a crucial precursor to artemisinin—is now feasible through microbial cell factories. In the fermentation of terpenes, two-phase fermentation technology has been widely applied due to its unique advantages. It facilitates in situ product extraction or adsorption, effectively mitigating the detrimental impact of product accumulation on microbial cells, thereby significantly bolstering the efficiency of microbial production of plant-derived terpenes. 
  • 14
  • 27 Mar 2024
Topic Review
The Plethora of Microbes with Anti-Inflammatory Activities
Inflammation, which has important functions in human defense systems and in maintaining the dynamic homeostasis of the body, has become a major risk factor for the progression of many chronic diseases. Although the applied medical products alleviate the general status, they still exert adverse effects in the long term. For this reason, the solution should be sought in more harmless and affordable agents. Microorganisms offer a wide range of active substances with anti-inflammatory properties. They confer important advantages such as their renewable and inexhaustible nature.
  • 31
  • 21 Mar 2024
Topic Review
Pure Mycelial Materials
Modern efforts to influence materials science with principles of biology have allowed fungal mycelial materials to take a foothold and develop novel solutions for the circular bioeconomy of tomorrow. However, recent studies have shown that the value of tomorrow’s green materials is not determined simply by their environmental viability, but rather by their ability to make the polluting materials of today obsolete. With an inherently strong structure of chitin and β-glucan, the ever-adaptable mycelia of fungi can compete at the highest levels with a litany of materials from leather to polyurethane foam to paper to wood. There are significant efforts to optimize pure mycelial materials (PMMs) through the entire process of species and strain selection, mycelial growth, and fabrication.
  • 41
  • 15 Mar 2024
Topic Review
Algal-Based Hollow Fiber Membrane Bioreactors
The treatment of living organisms is a critical aspect of various environmental and industrial applications, ranging from wastewater treatment to aquaculture. Algal membrane bioreactors (AMBRs) combine membrane separation with biological treatment. The layout of a biological reactor is designed in such a way that it promotes the production of microorganisms that need oxygen and dissolved organic carbon to reproduce. A membrane separates microorganism biomass from wastewater before removing bacteria and suspended particulates.
  • 31
  • 14 Mar 2024
Topic Review
Recovering Bioactive Compounds from Plant Waste
Agro-industrial wastes are suitable as cost-effective sources of various health-promoting molecules at significant concentrations. lnvestigating new methods for converting them into high-value-added compounds is crucial for the sustainable development goals. 
  • 38
  • 07 Mar 2024
Topic Review
Termite Microbial Symbiosis for Lignocellulosic Future Biorefinery
The hunt for renewable and alternative fuels has driven research towards the biological conversion of lignocellulosic biomass (LCB) into biofuels, including bioethanol and biohydrogen. Among the natural biomass utilization systems (NBUS), termites represent a unique and easy-to-access model system to study host–microbe interactions towards lignocellulose bioconversion/valorization. Termites have gained significant interest due to their highly efficient lignocellulolytic systems. The wood-feeding termites apply a unique and stepwise process for the hydrolysis of lignin, hemicellulose, and cellulose via biocatalytic processes; therefore, mimicking their digestive metabolism and physiochemical gut environments might lay the foundation for an innovative design of nature-inspired biotechnology.
  • 51
  • 05 Mar 2024
Topic Review
Plant-Microbe Interactions under the Extreme Habitats
Plant-microbe associations define a key interaction and have significant ecological and biotechnological perspectives. In recent times, plant-associated microbes from extreme environments have been extensively explored for their multifaceted benefits to plants and the environment, thereby gaining momentum in global research. Plant-associated extremophiles highlight ubiquitous occurrences, inhabiting extreme habitats and exhibiting enormous diversity. The remarkable capacity of extremophiles to exist in extreme environmental conditions is attributed to the evolution of adaptive mechanisms in these microbes at genetic and physiological levels. In addition, the plant-associated extremophiles have a major impact in promoting plant growth and development and conferring stress tolerance to the host plant, thereby contributing immensely to plant adaptation and survival in extreme conditions.
  • 46
  • 04 Mar 2024
Topic Review
Production of Virus-Like Particles
Virus-like particles based on retroviruses could be a potential envelope for safe and efficient drug formulations. Human endogenous retroviruses would make it possible to overcome the host immune response and deliver drugs to the desired target. PEG10 is a promising candidate that can bind to mRNA because it is secreted like an enveloped virus-like extracellular vesicle. PEG10 is a retrotransposon-derived gene that has been domesticated. 
  • 53
  • 04 Mar 2024
Topic Review
Biodiesel Production Process from Yeast Lipids
Renewable sources of energy have been sought due to the environmental impacts associated with fossil fuels, such as greenhouse gas emissions into the atmosphere. A promising alternative is biodiesel, particularly when obtained using yeast, as they offer certain advantages over other microorganisms due to their resilience to grow in various conditions, short reproduction times, and lower susceptibility to bacterial infections because they thrive at lower pH levels and have the ability to utilize a wide variety of substrates. Furthermore, biodiesel produced with yeast is composed of methyl ester fatty acids (FAME), providing it with good quality and performance in internal combustion engines, resulting in reduced greenhouse gas emissions compared to conventional diesel. The production of biodiesel using yeast involves six general stages, which offer various methodological alternatives with different degrees of sustainability.
  • 63
  • 04 Mar 2024
Topic Review
Plant-Based Films and Hydrogels for Wound Healing
Skin is constantly exposed to injury and infectious agents that can compromise its structural integrity and cause wounds. When this occurs, microorganisms from the skin microbiota and external bacteria and fungi can penetrate the wound and cause an infection, which complicates the healing process. Nowadays, there are several types of wound dressings available to treat wounds, some of which are incorporated with antimicrobial agents. However, the number of microorganisms resistant to these substances is rising. Therefore, the search for new, natural alternatives such as essential oils (EOs) and plant extracts (PEs) is on the rise. 
  • 44
  • 29 Feb 2024
  • Page
  • of
  • 74