Topic Review
Biomechanics of Table Tennis
Table tennis is a popular recreational and competitive sports at all levels. Recent research on table tennis maneuvers identified the differences between playing levels and between maneuvers using parameters which included ball and racket speed, joint kinematics and kinetics, electromyography, and plantar pressure distribution. Different maneuvers underlined changes on body posture and lines of movement which were accommodated particularly by the racket face angle, trunk rotation, knee and elbow joint movements, and thus different contributions of muscles. Higher-level players produced ball and strike at higher accuracy and repeatability but not necessarily lead to higher speed. In addition, higher-level players utilize superior whole-body coordination and footwork to compromise between agility and stability for a quality strike. Strengthening shoulder and wrist muscles could enhance the speed of the strike while personalized training shall be considered since motor coordination and adaptation vary among individuals.
  • 7.9K
  • 29 Oct 2020
Topic Review
Protein dynamics
Protein dynamics is a highly complex phenomenon comprising numerous contributions from motions with different mechanisms of action and happening with diverse timescales and amplitudes that highly depend on the system and the local environment.
  • 7.0K
  • 01 Nov 2020
Topic Review
Biological Effects and Mechanisms of Electromagnetic Radiation
Modern humanity wades daily through various radiations, resulting in frequent exposure and causing potentially important biological effects. Among them, the brain is the organ most sensitive to electromagnetic radiation (EMR) exposure.
  • 4.2K
  • 31 Aug 2022
Topic Review
Structure-Based Approach in Drug Design
Structure-based drug design (SBDD) is the computational approach that relies on knowledge of 3D structures of the biological targets to identify or design the potential chemical structure suitable for clinical tests. With the explosion of genomic, functional, and structural information in recent decades, the majority of biological targets with 3D structure have been identified and stimulated the applications of structure-based approaches in the current design pipeline. SBDD is popular for virtual screening to filter the drug-like compounds from a large library of small molecules, including widely applied approaches, such as docking and structure-based pharmacophore design. 
  • 3.6K
  • 24 Jan 2022
Topic Review
Mathematical Modeling and Computational Tools in Drug Design
The conventional drug discovery approach is an expensive and time-consuming process, but its limitations have been overcome with the help of mathematical modeling and computational drug design approaches. Previously, finding a small molecular candidate as a drug against a disease was very costly and required a long time to screen a compound against a specific target. The development of novel targets and small molecular candidates against different diseases including emerging and reemerging diseases remains a major concern and necessitates the development of novel therapeutic targets as well as drug candidates as early as possible. In this regard, computational and mathematical modeling approaches for drug development are advantageous due to their fastest predictive ability and cost-effectiveness features. Computer-aided drug design (CADD) techniques utilize different computer programs as well as mathematics formulas to comprehend the interaction of a target and drugs. Traditional methods to determine small-molecule candidates as a drug have several limitations, but CADD utilizes novel methods that require little time and accurately predict a compound against a specific disease with minimal cost.
  • 3.3K
  • 01 Aug 2022
Topic Review
Pigmentary and Structural Coloration in Nature
Most of us get inspired by and interact with the world around us based on visual cues such as the colors and patterns that we see. In nature, coloration takes three primary forms: pigmentary coloration, structural coloration, and bioluminescence. Typically, pigmentary and structural coloration are used by animals and plants for their survival. These forms of coloration are enabled by a variety of intracellular biophotonic structures.
  • 3.0K
  • 09 Jun 2022
Topic Review
Thermodynamic Dissipation Theory of Life
The Thermodynamic Dissipation Theory of the Origin and Evolution of Life argues that the escence of the origin of life was the microscopic dissipative structuring under UVC light of organic pigments (now known as the fundamental molecules of life - those common to all three domains) and their proliferation over the entire Earth surface, driven by the thermodynamic imperative of dissipating this part of the Archean solar spectrum into heat. With time, dissipative structuring led to ever more complex biosynthetic pathways for creating pigments and their support structures (and processes) which could dissipate not only the UVC region but also other UV regions and the visible wavelengths, until today reaching the "red edge" (at approximately 700 nm). The heat of dissipation of photons absorbed on organic pigments in water then catalyzes a host of coupled secondary dissipative processes such as; the water cycle, ocean and wind currents, hurricanes, etc. pushing the limit for dissipation of the incident light even further towards the infrared. The thermodynamic dissipation theory thus assgins an explicit thermodynamic function to life; the dissipative structuring, proliferation, and evolution of molecular pigments and their complexes from common precursor carbon based molecules under the impressed short wavelength solar photon potential to perform the explicit thermodynamic function of dissipating this light into long wavelength infrared light (heat). In a general sense, the origin of life is no different than the origin of other dissipative structuring processes like hurricanes and the water cycle, except that these latter processes deal with structuring involving hydrogen bonding while life deals with structuring involving covalent bonding. The external photon potential supplied continuously by the environment (our Sun), and its dissipation into heat by the assembly of dissipative structures, are, therefore, both integral components necessary for understanding life. Difficult problems related to the origin of life, such as enzyme-less replication of RNA and DNA, homochirality of the fundamental molecules, and the origin of amino acid -codon assignments (information encoding in RNA and DNA), also find simple explanations within this same dissipative thermodynamic framework once the existence of a relation between primordial RNA and DNA replication and UV-C photon dissipation is established.
  • 2.2K
  • 04 Feb 2021
Topic Review
Electromyography in Sports
Muscular alterations as a consequence of hypoxic situations contribute not only to a decrease in life expectancy but also to a lower quality of life and health status. Our perspective, based on the results of this systematic review, is that Electromyography (EMG) is a suitable tool for monitoring the different skeletal muscle responses and has sufficient sensitivity to detect the muscle changes produced by hypoxic stimuli. Therefore, surface EMG (sEMG) maybe provide a practical point-of-care diagnostic test for medical diagnoses as well as a tool to improve sports performance. integrated EMG (iEMG) studies the physiology and pathology of denervation, re-innervation, and various myopathies. It also analyzes deep musculature such as muscular behavior, temporal activity patterns, fatigue, and muscular activation. sEMG is suitable for providing information about global muscle behavior, temporal activity patterns, muscle fatigue, and the activation level of the superficial musculature.
  • 2.0K
  • 15 Jan 2021
Topic Review
Phospholipids
Phospholipids are unique and versatile molecules. They are of natural occurrence and the main components in cellular membranes. Arranged as a lipid bilayer, phospholipids play a significant role in the structure and functionality of biological membranes. They are amphiphilic and consist of a hydrophilic headgroup and a lipophilic/hydrophobic tail.
  • 1.9K
  • 04 Feb 2021
Topic Review
Impedance Based Cellular Assays
The development of organ on a chip technology utilising human cells, has the advantages of replacing animal experimentation and providing data more applicable to study of human cell biochemistry and disease. However, measurement of metabolites often requires cell lysis permitting only a single end-point measurement. Development of non-destructive methods for monitoring cell cultures in real-time is desirable in helping to inform pathways of disease and define targets for pharmacological intervention. Impedance-based cellular assays, representing one such technique, are designed to monitor cellular impedance, a property of the insulating nature of cell membranes, resulting from changes in cell shape caused by signalling events inside and between cells. This relies on culturing primary cells or cell lines in vitro directly on microelectrodes or using electrodes in culture media and then monitoring changes in impedance over time in response to external treatments compared to untreated controls. Impedance measurements are recorded in real-time at one or several frequencies and can be sampled several times a second for as long as desired. This is beneficial in pinpointing changes with time in culture and can be useful in determining the starting point of a toxic effect or a therapeutic window. A further advantage of impedance-based cellular assays lie in their ability to monitor the cell culture without using specific cell or protein labels, which might otherwise influence the target being studied. Depending on the system used, changes in impedance can be correlated with alterations in basolateral adhesion, membrane integrity, tight junctions and barrier function.
  • 1.8K
  • 30 Oct 2020
  • Page
  • of
  • 20