Topic Review
Fluorescent Organic Small Molecule Probes
Fluorescence imaging technology provides a visual tool for medicine, showing great potential in the fields of molecular biology, cellular immunology and oncology. In recent years, organic fluorescent probes have attracted much attention in the bioanalytical field. Among various organic fluorescent probes, fluorescent organic small molecule probes (FOSMPs) have become a research hotspot due to their excellent physicochemical properties, such as good photostability, high spatial and temporal resolution, as well as excellent biocompatibility. FOSMPs have proved to be suitable for in vivo bioimaging and detection. 
  • 716
  • 17 Jan 2023
Topic Review
Microbial Natural Products with Wound-Healing Properties
Wound healing continues to pose a challenge in clinical settings. Moreover, wound management must be performed properly and efficiently. Acute wound healing involves multiple cell divisions, a new extracellular matrix, and the process of formation, such as growth factors and cytokines, which are released at the site of the wound to regulate the process. Any changes that disrupt the healing process could cause tissue damage and prolong the healing process. Various factors, such as microbial infection, oxidation, and inflammation, can delay wound healing. In order to counter these problems, utilizing natural products with wound-healing effects has been reported to promote this process. A natural product with medicinal properties, which contribute to alleviating these factors, can facilitate the wound-healing process and be developed as a future drug. Numerous research has investigated the wound-healing properties of natural products that contain antioxidant, anti-inflammatory, collagen promotion, and antibacterial properties. Various phytochemicals, including alkaloids, tannins, flavonoids, terpenoids, phenolic, essential oils, and saponin compounds, may contribute to the medicinal effects. Natural products, including phytochemicals, play an important role in wound healing due to these properties. 
  • 444
  • 17 Jan 2023
Topic Review
Carbon Nanotube Films as Sensor Material
The photo-thermoelectric (PTE) effect in electronic materials effectively combines photo-absorption-induced local heating and associated thermoelectric conversion for uncooled and broadband photo-detection. Formation of heterogeneous material junctions across the carbon nanotube (CNT)-film-based PTE sensors, namely photo-detection interfaces, triggers the Seebeck effect with photo-absorption-induced local heating. Typical photo-detection interfaces include a channel–electrode boundary and a junction between P-type CNTs and N-type CNTs (PN junctions). While the original CNT film channel exhibits positive Seebeck coefficient values, the material selections of the counterpart freely govern the intensity and polarity of the PTE response signals. Based on these operating mechanisms, CNT film PTE sensors demonstrate a variety of physical and chemical non-destructive inspections. 
  • 378
  • 17 Jan 2023
Topic Review
Design and Preparation of Chitosan Hydrogels
Flexible wearable sensors show great potential for applications in wearable devices, remote health monitoring, artificial intelligence, soft robotics, and artificial skin due to their stretchability, bendability, thinness and portability, and excellent electrical properties. Chitosan (CS) is the only alkaline polysaccharide present in nature, which is deacetylated from chitin, and has attracted great interest in the biomedical field due to biocompatibility, non-toxicity, biodegradability, antimicrobial ability and safety. Tremendous efforts have focused on the advancement of chitosan-based hydrogels (CS-Gels) to realize multifunctional wearable sensing by modifying hydrogel networks with additives/nanofillers/functional groups.
  • 694
  • 17 Jan 2023
Topic Review
Formation of miRNA Nanoprobes
microRNAs (miRNA) captured the interest as novel diagnostic and prognostic biomarkers, with their potential for early indication of numerous pathologies. Since miRNA is a short, non-coding RNA sequence, the sensitivity and selectivity of their detection remain a cornerstone of scientific research. As such, methods based on nanomaterials have emerged in hopes of developing fast and facile approaches. At the core of the detection method based on nanotechnology lie nanoprobes and other functionalized nanomaterials. Since miRNA sensing and detection are generally rooted in the capture of target miRNA with the complementary sequence of oligonucleotides, the sequence needs to be attached to the nanomaterial with a specific conjugation strategy.
  • 285
  • 17 Jan 2023
Topic Review
Graphene and Carbon-Based Additives
Graphene exhibits remarkable and unparalleled qualities, making it highly desirable for tribological applications due to its exceptionally high mechanical strength, outstanding conductivity, low shear strength, and high surface area. The tribological properties of graphene are controlled by various techniques used for its synthesis and the presence of functional groups, such as residual oxygen functionalities, thickness and lateral dimensions of each sheet, number of atomic lamellae in a sheet, and structural flaws.
  • 635
  • 17 Jan 2023
Topic Review
Water Photo-Oxidation over TiO2
Photocatalytic splitting of water is a direct and attractive approach for the utilization of solar energy by producing the most-prospective clean hydrogen fuel. In photocatalytic water splitting, oxidation of water to molecular oxygen, or oxygen evolution reaction (OER), is the most difficult process because it needs the transfer of four electrons, while the hydrogen evolution reaction (HER) is a two-electron transfer reaction.
  • 763
  • 16 Jan 2023
Topic Review
Electrolysis of BO2 into BH4
The recycling of sodium borohydride poses a huge challenge to the drive towards a hydrogen economy. Mechano-chemical, thermo-chemical and electrochemical are the only reported methods of recycling sodium metaborate into sodium borohydride. Much attention have been devoted towards the mechano-chemical and thermo-chemical methods of reduction, little focus is devoted to electrochemical methods. This research describes the electrochemical behaviour of borohydride (BH4ˉ) and metaborate (BO2ˉ) anion in alkaline solutions. The electrochemical characteristics of BH4ˉ is controlled by the alkaline concentration, the concentration of the BH4ˉ and the type of electrode material. The attempts to electro-reduce the BO2ˉ into BH4ˉ is reviewed and the challenges, suggestions and future outlook of electro-reduction to recycle the BO2ˉ into BH4ˉ is highlighted.
  • 722
  • 16 Jan 2023
Topic Review
Titanium Dioxide for Water Purification
Titanium dioxide (TiO2), one of the most frequently used materials in general, has emerged as an excellent photocatalytic material for environmental applications. Here, principles and mechanisms of the photocatalytic activity of TiO2 have been analyzed. Structural and physical specificities of TiO2 nanoparticles, such as morphology, crystal structure, and electronic and optical properties, have been considered in the context of photocatalytic applications.
  • 1.5K
  • 16 Jan 2023
Topic Review
Phytotoxic Metabolites and Fungi of Grapevine Trunk Diseases
Grapevines are one of the most economically important crops worldwide, with approximately 48% of the world’s grape production used for wine production. Fungal diseases are limiting factors to the production of wine grapes, impacting the quality of wine. Grapevine trunk diseases (GTDs), caused by one or several fungal pathogens, cause a progressive decline in vines resulting in a loss in productivity and eventual death of the vines. Internal and external GTDs symptoms sometimes take several years to appear after infection; thus, they are considered slow-progression diseases.
  • 635
  • 16 Jan 2023
  • Page
  • of
  • 467
ScholarVision Creations