Topic Review
Tetrazine-Based Fluorogenic Probes
Various bioorthogonal chemistries have been used for fluorescent imaging owing to the advantageous reactions they employ. Recent advances in bioorthogonal chemistry have revolutionized labeling strategies for fluorescence imaging, with inverse electron demand Diels–Alder (iEDDA) reactions in particular attracting recent attention owing to their fast kinetics and excellent specificity. One of the most interesting features of the iEDDA labeling strategy is that tetrazine-functionalized dyes are known to act as fluorogenic probes.
  • 1.1K
  • 13 Apr 2021
Topic Review
Composite Electromagnetic Shielding Applications
With advancements in the automated industry, electromagnetic inferences (EMI) have been increasing over time, causing major distress among the end-users and affecting electronic appliances. The issue is not new and major work has been done, but unfortunately, the issue has not been fully eliminated.
  • 1.1K
  • 19 Aug 2021
Topic Review
Oral Tissue Engineering and Regeneration
The reconstruction or repair of oral and maxillofacial functionalities and aesthetics is a priority for patients affected by tooth loss, congenital defects, trauma deformities, or various dental diseases. Therefore, in dental medicine, tissue reconstruction represents a major interest in oral and maxillofacial surgery, periodontics, orthodontics, endodontics, and even daily clinical practice. The current clinical approaches involve a vast array of techniques ranging from the traditional use of tissue grafts to the most innovative regenerative procedures, such as tissue engineering. In recent decades, a wide range of both artificial and natural biomaterials and scaffolds, genes, stem cells isolated from the mouth area (dental follicle, deciduous teeth, periodontal ligament, dental pulp, salivary glands, and adipose tissue), and various growth factors have been tested in tissue engineering approaches in dentistry, with many being proven successful. However, to fully eliminate the problems of traditional bone and tissue reconstruction in dentistry, continuous research is needed.
  • 1.1K
  • 04 Dec 2020
Topic Review
Natural Fibre-Reinforced Polymer Composites
As one of the fastest-growing additive manufacturing (AM) technologies, fused deposition modelling (FDM) shows great potential in printing natural fibre-reinforced composites (NFRC). However, several challenges, such as low mechanical properties and difficulty in printing, need to be overcome. Therefore, the effort to improve the NFRC for use in AM has been accelerating in recent years.
  • 1.1K
  • 23 Jul 2021
Topic Review
Silica Hydride
The silica hydride surface is composed of silicon-hydrogen groups, which is much more stable, less reactive and delivers different chromatographic and chemical characteristics.
  • 1.1K
  • 27 Dec 2021
Topic Review
The Medicinal Chemistry of Artificial Nucleic Acids
Nucleic acids play a central role in human biology, making them suitable and attractive tools for therapeutic applications. While conventional drugs generally target proteins and induce transient therapeutic effects, nucleic acid medicines can achieve long-lasting or curative effects by targeting the genetic bases of diseases.
  • 1.1K
  • 05 Aug 2022
Topic Review
Catalytic Mechanism of Photocatalysts Based on GCN Heterogeneous
In the current world situation, population and industrial growth have become major problems for energy and environmental concerns. Extremely noxious pollutants such as heavy metal ions, dyes, antibiotics, phenols, and pesticides in water are the main causes behind deprived water quality leading to inadequate access to clean water. In this connection, graphite carbon nitride (GCN or g-C3N4) a nonmetallic polymeric material has been utilized extensively as a visible-light-responsive photocatalyst for a variety of environmental applications.
  • 1.1K
  • 16 Jun 2022
Topic Review
Carbon-Coatings Improve Performance of Li-Ion Battery
The development of lithium-ion batteries largely relies on the cathode and anode materials. In particular, the optimization of cathode materials plays an extremely important role in improving the performance of lithium-ion batteries, such as specific capacity or cycling stability. Carbon coating modifying the surface of cathode materials is regarded as an effective strategy that meets the demand of Lithium-ion battery cathodes.
  • 1.1K
  • 12 Jul 2022
Topic Review
Focused-Ion-Beam for chiral photonics
Focused ion beam (FIB) processing which enabled scientific and technological advances in the realization and study of micro- and nano-systems in many research areas, such as nanotechnology, material science, and the microelectronic industry. Recently, its applications have been extended to the photonics field, owing to the possibility of developing systems with complex shapes, including 3D chiral shapes. Micro-/nano-structured elements with precise geometrical features at the nanoscale can be realized by FIB processing, with sizes that can be tailored in order to tune optical responses over a broad spectral region. In this entry, we give an overview of the recent efforts in this field which have involved FIB processing as a nanofabrication tool for photonics applications. In particular, we focus on FIB-induced deposition and FIB milling, employed to build 3D nanostructures and metasurfaces exhibiting intrinsic chirality. 
  • 1.1K
  • 18 Mar 2021
Topic Review
Aurivillius-Phase Bi4Ti3O12-nBiFeO3 Materials
Aurivillius-type layered compound have attracted increasing research interest, especially in recent 20 years, due to their promising electrical properties as new lead-free piezoelectric materials operating at high temperatures. For instance, the well-known Bi4Ti3O12, presents large spontaneous polarization, anisotropy and high ferroelectric Curie temperature and have wide applications in the electronic industry, capacitors, transducers, nonvolatile ferroelectric memories, piezoelectric sensors and optical devices. To increase functionality of Bi4Ti3O12 modification with BiFeO3 is very promising, which is also a methodology for constructing single-phase multiferroics in which ferrelectricity and magnetic ordering are coupled near room temperature. Combining these two materials exhibiting different physical performances one can create a kind of novel materials and thus achieve functionality. Herein, we summarized the recent progress in the field of synthesis of BFTO-n materials with various architectures and highlighted their extraordinary properties for promising applications in the electronic industry, quantum devices, capacitors, transducers, microwave absorbers, catalysts and photoelectric devices. 
  • 1.1K
  • 13 Jan 2021
  • Page
  • of
  • 467
ScholarVision Creations