Topic Review
The Rheological Phase Reaction Method
The term “rheology” stands for the study of a material’s flow behavior under applied deformation forces or stress. The Rheological Phase Reaction (RPR) method is considered a “pollution-less method” to prepare any metal oxides with high crystallinity, phase purity, and fewer agglomerations depending on the proper raw materials and the right temperature conditions are being chosen. 
  • 28
  • 03 Feb 2023
Topic Review
Nanocomposites: Brief Overview
Nanocomposites are composite materials consisting of nanoscale building blocks and a matrix. They have unique properties that make them useful in a wide range of applications, including water remediation, energy storage and conversion, packaging, sensors, biomedicine, environmental monitoring, and coatings. The properties of nanocomposites can be tailored by controlling the size, shape, and composition of the nanoscale building blocks and the matrix material. Some of the key properties of nanocomposites include high surface area-to-volume ratio, improved mechanical properties, enhanced electrical and thermal conductivity, improved barrier properties, and biocompatibility. The study of nanocomposites is a rapidly growing field with many exciting opportunities for new and improved applications.These articles provide a comprehensive overview of the synthesis, structure, properties, and applications of nanocomposites, including their use in water remediation.
  • 14
  • 03 Feb 2023
Topic Review
Hydrogels Combined with Silver Nanoparticles against Antimicrobial Resistance
The development of multidrug-resistant (MDR) microorganisms has increased dramatically as a natural consequence of the misuse and overuse of antimicrobials. The World Health Organization (WHO) recognizes that this is one of the top ten global public health threats facing humanity today, demanding urgent multisectoral action. In this sense, metallic nanoparticles (such as silver nanoparticles) have emerged as promising alternatives due to their outstanding antibacterial and antibiofilm properties. The efficient delivery of the nanoparticles (NPs) is also a matter of concern, and studies have demonstrated that hydrogels present an excellent ability to perform this task.
  • 57
  • 03 Feb 2023
Topic Review
Technologies for Detecting Oxygen Vacancies
A perovskite catalyst combined with various advanced oxidation processes (AOPs) to treat organic wastewater attracted extensive attention. The physical and chemical catalytic properties of perovskite were largely related to oxygen vacancies (OVs). OVs were able to alter the chemical, physical, and electronic properties of materials, so they became one of the most important research subjects. It was usually necessary to observe and analyze the phenomenon caused by OVs; however, due to their low concentration and short existence time, OVs were normally not visible to the naked eye. The relative concentration of OVs ranged from PPM to tens of atomic percent, a condition that was difficult to find a fitting experimental plan to characterize and distinguish OVs. 
  • 8
  • 02 Feb 2023
Topic Review
Synthetic Imidazopyridine-Based Derivatives
Fused pyridines are reported to display various pharmacological activities, such as antipyretic, analgesic, antiprotozoal, antibacterial, antitumor, antifungal, anti-inflammatory, and antiapoptotic. They are widely used in the field of medicinal chemistry. Imidazopyridines (IZPs) are crucial classes of fused heterocycles that are expansively reported on in the literature. Evidence suggests that IZPs, as fused scaffolds, possess more diverse profiles than individual imidazole and pyridine moieties. Bacterial infections and antibacterial resistance are ever-growing risks in the 21st century. Only one IZP, i.e., rifaximin, is available on the market as an antibiotic
  • 31
  • 02 Feb 2023
Topic Review
The Lewis Acid System
Cycloketones can be oxidized to lactones using molecular oxygen, peroxy acids, or hydrogen peroxide as an oxidant. Hydrogen peroxide is one of the environmental oxidants. Because of the weak oxidation ability of hydrogen peroxide, Bronsted acids and Lewis acids are used as catalysts to activate hydrogen peroxide or the carbonyl of ketones to increase the nucleophilic performance of hydrogen peroxide. The catalytic mechanisms of Bronsted acids and Lewis acids differ in the Baeyer–Villiger oxidation of cyclohexanone with an aqueous solution of hydrogen peroxide as an oxidant.
  • 17
  • 02 Feb 2023
Topic Review
Development of Agricultural-Based Nano-Structured Aerogels
Aerogels are an exceptional form of porous materials with extraordinary unique properties. The aerogel has been fabricated from different inorganic and organic materials and incorporated with a variety of novel compounds for specific applications and to enhance its performance in the desired application. 
  • 18
  • 02 Feb 2023
Topic Review
RGD Peptide-Based Biomaterials for Tissue Engineering
Tissue engineering (TE) is a rapidly expanding field aimed at restoring or replacing damaged tissues. The arginine–glycine–aspartic acid (RGD) family of peptides is known to be the most prominent ligand for extracellular integrin receptors. Due to their specific expression patterns in various human tissues and their tight association with various pathophysiological conditions, RGD peptides are suitable targets for tissue regeneration and treatment as well as organ replacement.
  • 29
  • 02 Feb 2023
Topic Review
Heteroanionic-Based Materials for Photocatalysis Applications
Photocatalysis has been found to be a practical, environmentally friendly approach for degrading various pollutants into non-toxic products (e.g., H2O and CO2) and generating fuels from water using solar light. Mainly, traditional photocatalysts (such as metal oxides, sulfides, and nitrides) have shown a promising role in various photocatalysis reactions. However, it faces many bottlenecks, such as a wider band gap, low light absorption nature, photo-corrosion issues, and quick recombination rates. Due to these, a big question arises of whether these traditional photocatalysts can meet increasing energy demand and degrade emerging pollutants in the future. Currently, researchers view heteroanionic materials as a feasible alternative to conventional photocatalysts for future energy generation and water purification techniques due to their superior light absorption capacity, narrower band gap, and improved photo-corrosion resistance. Therefore, this entry summarizes the recent developments in heteroanionic materials, their classifications based on anionic presence, their synthesis techniques, and their role in photocatalysis. In the end, we present a few recommendations for improving the photocatalytic performance of future heteroanionic materials.
  • 60
  • 01 Feb 2023
Topic Review
Polysaccharide-Based Hydrogels Drug Delivery in Cancer Therapy
Hydrogels are three-dimensional crosslinked structures with physicochemical properties similar to the extracellular matrix (ECM). By changing the hydrogel’s material type, crosslinking, molecular weight, chemical surface, and functionalization, it is possible to mimic the mechanical properties of native tissues. Hydrogels are currently used in the biomedical and pharmaceutical fields for drug delivery systems, wound dressings, tissue engineering, and contact lenses. Polysaccharide-based hydrogels can be used as drug delivery systems for the efficient release of various types of cancer therapeutics, enhancing the therapeutic efficacy and minimizing potential side effects.
  • 37
  • 01 Feb 2023
  • Page
  • of
  • 331
Top
Feedback