Topic Review
3D-Bioprinting for Chronic Wound
Skin substitutes can provide a temporary or permanent treatment option for chronic wounds. The selection of skin substitutes depends on several factors, including the type of wound and its severity. Full-thickness skin grafts (SGs) require a well-vascularised bed and sometimes will lead to contraction and scarring formation. Besides, donor sites for full-thickness skin grafts are very limited if the wound area is big, and it has been proven to have the lowest survival rate compared to thick- and thin-split thickness. Tissue engineering technology has introduced new advanced strategies since the last decades to fabricate the composite scaffold via the 3D-bioprinting approach as a tissue replacement strategy. Considering the current global donor shortage for autologous split-thickness skin graft (ASSG), skin 3D-bioprinting has emerged as a potential alternative to replace the ASSG treatment. The three-dimensional (3D)-bioprinting technique yields scaffold fabrication with the combination of biomaterials and cells to form bioinks. 
  • 450
  • 08 Jan 2022
Topic Review
Mercury Toxicity and Detection
Mercury (Hg), this non-essential heavy metal released from both industrial and natural sources entered into living bodies, and cause grievous detrimental effects to the human health and ecosystem. 
  • 439
  • 22 Mar 2021
Topic Review
Erythrocytes for Targeted Drug Delivery
Erythrocytes (red blood cells, RBCs) are the largest population of blood cells in mammals. Their main function is oxygen transfer to cells and body tissues. The lifetime of erythrocytes in the bloodstream is 100–120 days, after which they are removed by the spleen. Due to the unique biophysical properties RBCs can be used as drug carriers in two different ways: by incorporating the drug into the cells or by binding it (using non-specific adsorption or a specific association, involving antibodies or various chemical cross-linking compounds) on the RBCs’ surface. Erythrocytes can act as carriers that prolong the drug’s action due to its gradual release from the carrier; as bioreactors with encapsulated enzymes performing the necessary reactions, while remaining inaccessible to the immune system and plasma proteases; or as a tool for targeted drug delivery to target organs, primarily to cells of the reticuloendothelial system, liver and spleen. To date, erythrocytes have been studied as carriers for a wide range of drugs, such as enzymes, antibiotics, anti-inflammatory, antiviral drugs, etc., and for diagnostic purposes. 
  • 403
  • 22 Apr 2022
Topic Review
Medical Applications of Chitin
Chitin is a universal biopolymer that is found in microbes, plants, fungi, the exoskeleton of insects, various species of algae, and bottom-feeding crustaceans. This (1–4)-linked N-acetyl-ß-D-glucosamine polysaccharide can be readily processed with simple chemical procedures without putting a species at risk. Chitin has garnered interest as an alternative substance that can be used in the medical, environmental, and agricultural sectors.
  • 401
  • 29 Mar 2022
Topic Review
Skeletal Muscle Uncoupling Proteins in Obesity Mice Models
Obesity and accompanying type 2 diabetes are among major and increasing worldwide problems that occur fundamentally due to excessive energy intake during its expenditure. Endotherms continuously consume a certain amount of energy to maintain core body temperature via thermogenic processes, mainly in brown adipose tissue and skeletal muscle. Skeletal muscle glucose utilization and heat production are significant and directly linked to body glucose homeostasis at rest, and especially during physical activity. However, this glucose balance is impaired in diabetic and obese states in humans and mice, and manifests as glucose resistance and altered muscle cell metabolism. Uncoupling proteins have a significant role in converting electrochemical energy into thermal energy without ATP generation. Different homologs of uncoupling proteins were identified, and their roles were linked to antioxidative activity and boosting glucose and lipid metabolism. From this perspective, uncoupling proteins were studied in correlation to the pathogenesis of diabetes and obesity and their possible treatments. Mice were extensively used as model organisms to study the physiology and pathophysiology of energy homeostasis. However, researchers should be aware of interstrain differences in mice models of obesity regarding thermogenesis and insulin resistance in skeletal muscles. 
  • 390
  • 05 May 2022
Topic Review
2-Hydroxybutyric Acid for Insulin Resistance
Diabetes mellitus type 2 (T2D), commonly known as non-insulin-dependent diabetes mellitus (NIDDM) is responsible for up to 95% of diabetic cases worldwide. It is defined as a chronic condition characterized by the loss and/or dysfunction of β-cells and insulin resistance (IR) in effector tissues, which is immediately recognized by an increase in glucose levels in the bloodstream, i.e., hyperglycemia.
  • 385
  • 15 Dec 2021
Topic Review
Bergenin (BER), a key constituent of Bergenia crassifolia (Saxifragaceae), has gained extensive attention, owing to its array of pharmacological actions, including anti-infective, anti-cancer, anti-diabetic, neuroprotective, hepatoprotective, anti-urolithiatic, anti-hyperuricemic, and anti-bradykinin properties. 
  • 377
  • 29 Mar 2022
Topic Review
Valorization of Grape by-products
The emergence of antibiotic-resistance in bacteria has limited the ability to treat bacterial infections, besides increasing their morbidity and mortality at the global scale. The need for alternative solutions to deal with this problem is urgent and has brought about a renewed interest in natural products as sources of potential antimicrobials. The wine industry is responsible for the production of vast amounts of waste and by-products, with associated environmental problems. These residues are rich in bioactive secondary metabolites, especially phenolic compounds. Some phenolics are bacteriostatic/bactericidal against several pathogenic bacteria and may have a synergistic action towards antibiotics, mitigating or reverting bacterial resistance to these drugs. Complex phenolic mixtures, such as those present in winemaking residues (pomace, skins, stalks, leaves, and especially seeds), are even more effective as antimicrobials and could be used in combined therapy, thereby contributing to management of the antibiotic resistance crisis. 
  • 375
  • 14 Feb 2022
Topic Review
Influenza Hemagglutinin Vaccines
Hemagglutinin (HA) is the predominant antigenic protein of influenza viruses and antibodies directed at HA are correlated with protection against influenza virus infection
  • 373
  • 12 May 2021
Topic Review
TMS-EEG in Patients with Schizophrenia
Schizophrenia (SCZ) is a serious mental disorder, and its pathogenesis is complex. Recently, the glutamate hypothesis and the excitatory/inhibitory (E/I) imbalance hypothesis have been proposed as new pathological hypotheses for SCZ. Combined transcranial magnetic stimulation (TMS) and electroencephalography (EEG) is a non-invasive novel method that enables us to investigate the cortical activity in humans, and this modality is a suitable approach to evaluate these hypotheses.
  • 370
  • 23 May 2021
  • Page
  • of
  • 42