Topic Review
Computational Chemistry Methods
The main objective of computational chemistry is to solve chemical problems by simulating chemical systems (molecular, biological, materials) in order to provide reliable, accurate and comprehensive information at an atomic level. To this end, there are two main methodological families: those based on quantum chemical methods and those based on molecular mechanics. The former are methods in which the electrons are explicitly accounted for, while in the latter their presence is hidden in the force field. 
  • 9.1K
  • 17 Jun 2021
Topic Review
Unmanned Systems
An Unmanned System (US) or Vehicle (UV) can be defined as an “electro-mechanical system, with no human operator aboard, that is able to exert its power to perform designed missions”
  • 8.0K
  • 17 Mar 2021
Topic Review
Negawatt Power
Negawatt power is a theoretical unit of power representing an amount of electrical power (measured in watts) saved. The energy saved is a direct result of energy conservation or increased energy efficiency. The term was coined by the chief scientist of the Rocky Mountain Institute and environmentalist Amory Lovins in 1985, within the article, "Saving Gigabucks with Negawatts," where he argued that utility customers don’t want kilowatt-hours of electricity; they want energy services such as hot showers, cold beer, lit rooms, and spinning shafts, which can come more cheaply if electricity is used more efficiently. Lovins felt an international behavioral change was necessary in order to decrease countries' dependence on excessive amounts of energy. The concept of a negawatt could influence a behavioral change in consumers by encouraging them to think about the energy that they spend. A negawatt market can be thought of as a secondary market, in which electricity is allocated from one consumer to another consumer within the energy market. In this market, negawatts could be treated as a commodity. Commodities have the ability to be traded across time and space, which would allow negawatts to be incorporated in the international trading system. Roughly 10% of all U.S. electrical generating capacity is in place to meet the last 1% of demand and there is where the immediate efficiency opportunity exists. On March 15, 2011, the Federal Energy Regulatory Commission (FERC), the agency that regulates the U.S. electrical grid, approved a rule establishing the approach to compensation for demand response resources intended to benefit customers and help improve the operation and competitiveness of organized wholesale energy markets. This means that negawatts produced by reducing electrical use can demand the same market prices as real megawatts of generated electricity. The incentives for a negawatt market include receiving money, reduction of national energy dependency, and the local electricity deregulation within certain nations or states. As for the cost incentive, those who produce negawatts or simply conserve energy can earn money by selling the saved energy. The negawatt market could help nations or states obtain a deregulated electricity system by creating another market to purchase electricity from. The negawatt market also has two main drawbacks. Currently, there is no way to precisely measure the amount of energy saved in negawatts, and electricity providers may not want customers to use less energy due to the loss of profit.
  • 6.7K
  • 22 Nov 2022
Topic Review
Two-Ray Ground-Reflection Model
The Two-Rays Ground Reflected Model is a radio propagation model which predicts the path losses between a transmitting antenna and a receiving antenna when they are in LOS (line of sight). Generally, the two antenna each have different height. The received signal having two components, the LOS component and the multipath component formed predominantly by a single ground reflected wave.
  • 6.3K
  • 08 Nov 2022
Topic Review
Tandem Mass Spectrometry
Tandem mass spectrometry, also known as MS/MS or MS2, involves multiple steps of mass spectrometry selection, with some form of fragmentation occurring in between the stages. In a tandem mass spectrometer, ions are formed in the ion source and separated by mass-to-charge ratio in the first stage of mass spectrometry (MS1). Ions of a particular mass-to-charge ratio (precursor ions) are selected and fragment ions (product ions) are created by collision-induced dissociation, ion-molecule reaction, photodissociation, or other process. The resulting ions are then separated and detected in a second stage of mass spectrometry (MS2).
  • 5.4K
  • 19 Oct 2022
Topic Review
Propene
Propene, also known as propylene, is an unsaturated organic compound with the chemical formula [math]\ce{ CH3CH=CH2 }[/math]. It has one double bond, and is the second simplest member of the alkene class of hydrocarbons. It is a colorless gas with a faint petroleum-like odor.
  • 5.3K
  • 14 Oct 2022
Topic Review
Force Field
In the context of chemistry and molecular modelling, a force field is a computational method that is used to estimate the forces between atoms within molecules and also between molecules. More precisely, the force field refers to the functional form and parameter sets used to calculate the potential energy of a system of atoms or coarse-grained particles in molecular mechanics, molecular dynamics, or Monte Carlo simulations. The parameters for a chosen energy function may be derived from experiments in physics and chemistry, calculations in quantum mechanics, or both. Force fields are interatomic potentials and utilize the same concept as force fields in classical physics, with the difference that the force field parameters in chemistry describe the energy landscape, from which the acting forces on every particle are derived as a gradient of the potential energy with respect to the particle coordinates. All-atom force fields provide parameters for every type of atom in a system, including hydrogen, while united-atom interatomic potentials treat the hydrogen and carbon atoms in methyl groups and methylene bridges as one interaction center. Coarse-grained potentials, which are often used in long-time simulations of macromolecules such as proteins, nucleic acids, and multi-component complexes, sacrifice chemical details for higher computing efficiency.
  • 4.9K
  • 10 Nov 2022
Topic Review
Refractive Index and Extinction Coefficient of Thin-Film Materials
The derivation of the Forouhi–Bloomer dispersion equations is based on obtaining an expression for k as a function of photon energy, symbolically written as k(E), starting from first principles quantum mechanics and solid state physics. An expression for n as a function of photon energy, symbolically written as n(E), is then determined from the expression for k(E) in accordance to the Kramers–Kronig relations which states that n(E) is the Hilbert Transform of k(E). The Forouhi–Bloomer dispersion equations for n(E) and k(E) of amorphous materials are given as: [math]\displaystyle{ k(E) = \frac{A(E-E_g)^2}{E^2-BE+C} \ }[/math] [math]\displaystyle{ n(E) = n(\infty)+\frac{(B_0 E + C_0 )}{E^2-BE+C} \ }[/math] The five parameters A, B, C, Eg, and n(∞) each have physical significance. Eg is the optical energy band gap of the material. A, B, and C depend on the band structure of the material. They are positive constants such that 4C-B2 > 0. Finally, n(∞), a constant greater than unity, represents the value of n at E = ∞. The parameters B0 and C0 in the equation for n(E) are not independent parameters, but depend on A, B, C, and Eg. They are given by: [math]\displaystyle{ B_0 = \frac{A}{Q} \ \left (\frac{-B^2}{2} \ + E_gB - {E_g}^2 + C \right) }[/math] [math]\displaystyle{ C_0 = \frac{A}{Q} \ \left [({E_g}^2 + C) \frac{B}{2} \ - 2E_g C \right] }[/math] where [math]\displaystyle{ Q = \frac{1}{2} \ (4C - B^2 )^{\frac{1}{2}} }[/math] Thus, for amorphous materials, a total of five parameters are sufficient to fully describe the dependence of both n and k on photon energy, E. For crystalline materials which have multiple peaks in their n and k spectra, the Forouhi–Bloomer dispersion equations can be extended as follows: [math]\displaystyle{ k(E) = \sum_{i=1}^q \left [\frac{A_i(E - E_{g_i})^2}{E^2-B_iE+C_i} \right] }[/math] [math]\displaystyle{ n(E) = n(\infty)+\sum_{i=1}^q \left [\frac{B_{0_i}E+C_{0_i}}{E^2-B_iE+C_i} \right] }[/math] The number of terms in each sum, q, is equal to the number of peaks in the n and k spectra of the material. Every term in the sum has its own values of the parameters A, B, C, Eg, as well as its own values of B0 and C0. Analogous to the amorphous case, the terms all have physical significance.
  • 4.4K
  • 31 Oct 2022
Topic Review
Frequency
Frequency is the number of occurrences of a repeating event per unit of time. It is also referred to as temporal frequency, which emphasizes the contrast to spatial frequency and angular frequency. Frequency is measured in units of hertz (Hz) which is equal to one occurrence of a repeating event per second. The period is the duration of time of one cycle in a repeating event, so the period is the reciprocal of the frequency. For example: if a newborn baby's heart beats at a frequency of 120 times a minute (2 hertz), its period, T, — the time interval between beats—is half a second (60 seconds divided by 120 beats). Frequency is an important parameter used in science and engineering to specify the rate of oscillatory and vibratory phenomena, such as mechanical vibrations, audio signals (sound), radio waves, and light.
  • 3.6K
  • 16 Nov 2022
Topic Review
Public Transport in Shanghai
Shanghai has an extensive public transport system, largely based on buses, trolley buses, taxis, and a rapidly expanding metro system. Shanghai has invested heavily in public transportation before and after the 2010 World Expo, including the construction of the Hongqiao transportation hub of high-speed rail, air, metro and bus routes. Public transport is the major mode of transport in Shanghai as limitations on car purchases were introduced in 1994 in order to limit the growth of automobile traffic and alleviate congestion. New private cars cannot be driven without a license plate, which are sold in monthly license plate auctions which is only accessible for locally registered residents and those who have paid social insurance or individual income taxes for over three years. Around 9,500 license plates are auctioned each month, and the average price is about CN¥89,600 (US$12,739) in 2019. Shanghai (population of 25 million) has over four million cars on the road, the fifth-largest number of any Chinese city. Despite this the city remains plagued by congestion and vehicle pollution. The results of the "2011 Shanghai Public Transport Passenger Flow Survey" released by the Municipal Transportation and Port Bureau showed that the city's public transport travel time was gradually reduced. The average travel distance of public transport in 2011 was 8.5 kilometers, the travel time 50.8 minutes per trip and the travel cost of public transport is gradually reduced: in 2011, the cost of rail transit was 2.4 yuan per trip, down 14% from 2005; the cost of bus and tram trips was 1.8 yuan, down 5% from 2005. Metro accounted for 33% of the public transport passenger volume. In 2018 the public transportation system handled a total of 16.05 million rides on average each day, among which 10.17 million (63%) were made via the Metro and 5.76 million (36%) via buses. Shanghai expressway traffic volume was 1.215 million vehicles on an average day.
  • 3.6K
  • 08 Nov 2022
  • Page
  • of
  • 9