Topic Review
Alignment-Free Study of Viral Diversity
Viral sequence variation can expand the host repertoire, enhance the infection ability, and/or prevent the build-up of a long-term specific immunity by the host. The study of viral diversity is, thus, critical to understand sequence change and its implications for intervention strategies.
  • 268
  • 22 Sep 2021
Topic Review
Approaches to Cardiovascular and Respiratory Systems Modelling
'Medicine in silico' has been strongly encouraged due to ethical and legal limitations related to animal experiments and investigations conducted on patients. Computer models, particularly the very complex ones (virtual patients—VP), can be used in medical education and biomedical research as well as in clinical applications. Simpler patient-specific models may aid medical procedures. However, computer models are unfit for medical devices testing. Hybrid (i.e., numerical–physical) models do not have this disadvantage.
  • 70
  • 20 Jun 2022
Topic Review
Classification Algorithms for Unifloral Honeys
Unifloral honeys are highly demanded by honey consumers, especially in Europe. To ensure that a honey belongs to a very appreciated botanical class, the classical methodology is palynological analysis to identify and count pollen grains. Highly trained personnel are needed to perform this task, which complicates the characterization of honey botanical origins. Organoleptic assessment of honey by expert personnel helps to confirm such classification. In this study, the ability of different machine learning (ML) algorithms to correctly classify seven types of Spanish honeys of single botanical origins (rosemary, citrus, lavender, sunflower, eucalyptus, heather and forest honeydew) was investigated comparatively. The botanical origin of the samples was ascertained by pollen analysis complemented with organoleptic assessment. Physicochemical parameters such as electrical conductivity, pH, water content, carbohydrates and color of unifloral honeys were used to build the dataset. The following ML algorithms were tested: penalized discriminant analysis (PDA), shrinkage discriminant analysis (SDA), high-dimensional discriminant analysis (HDDA), nearest shrunken centroids (PAM), partial least squares (PLS), C5.0 tree, extremely randomized trees (ET), weighted k-nearest neighbors (KKNN), artificial neural networks (ANN), random forest (RF), support vector machine (SVM) with linear and radial kernels and extreme gradient boosting trees (XGBoost). The ML models were optimized by repeated 10-fold cross-validation primarily on the basis of log loss or accuracy metrics, and their performance was compared on a test set in order to select the best predicting model. Built models using PDA produced the best results in terms of overall accuracy on the test set. ANN, ET, RF and XGBoost models also provided good results, while SVM proved to be the worst. 
  • 133
  • 05 Jul 2021
Topic Review
Commercial Targeted Libraries in Drug Design
After the identification of a biological target (enzyme, receptor, protein and so on), the focus of the early phase of drug discovery rests on the identification of leads or compounds that exhibit pharmacological activity against this specific target. Compounds of interest are most often discovered in pre-existing libraries of compounds that can be either virtual or physical. Computer-aided methods which have become increasingly important over the years in drug development utilize virtual compound libraries. While physical compound libraries reach the number of millions of molecules, virtual compound libraries created by large pharmaceutical companies can range from 107 to 1018 molecules. Investigations of these libraries identifies specific molecules, synthetic pathways and focus on a specific chemical space. Targeted libraries are often smaller and are focused towards a specific chemical space. They are created by using relevant biological information with the aim to decrease the processing time associated with larger libraries while maintaining the most relevant chemical space where lead compounds can be found. Due to the fact that they required less computational or wet-lab labor to process they have become very popular with smaller laboratories which try to compete in the drug-development sector. Many modern vendors of compounds today offer such libraries, but the quality of the procedure used to define desired chemical space and select compounds is questionable.
  • 229
  • 25 May 2022
Topic Review
Computer-Aided Drug Discovery for SMA
Spinal muscular atrophy (SMA), one of the leading inherited causes of child mortality, is a rare neuromuscular disease arising from loss-of-function mutations of the survival motor neuron 1 (SMN1) gene, which encodes the SMN protein. When lacking the SMN protein in neurons, patients suffer from muscle weakness and atrophy, and in the severe cases, respiratory failure and death. Several therapeutic approaches show promise with human testing and three medications have been approved by the U.S. Food and Drug Administration (FDA) to date. Despite the shown promise of these approved therapies, there are some crucial limitations, one of the most important being the cost. The FDA-approved drugs are high-priced and are shortlisted among the most expensive treatments in the world. The price is still far beyond affordable and may serve as a burden for patients. The blooming of the biomedical data and advancement of computational approaches have opened new possibilities for SMA therapeutic development. 
  • 165
  • 09 Oct 2021
Topic Review
Deep Learning in Predicting Aging-Related Diseases
Aging refers to progressive physiological changes in a cell, an organ, or the whole body of an individual, over time. Aging-related diseases are highly prevalent and could impact an individual’s physical health. Recently, artificial intelligence (AI) methods have been used to predict aging-related diseases and issues, aiding clinical providers in decision-making based on patient’s medical records. Deep learning (DL), as one of the most recent generations of AI technologies, has embraced rapid progress in the early prediction and classification of aging-related issues.
  • 144
  • 29 Nov 2021
Topic Review
Disordered Proteins and Dynamic Interactions
Intrinsically disordered proteins (IDPs) or regions (IDRs), compared to the well-structural proteins, do not have stable tertiary structures under physiological conditions, and even remain dynamic in specific complexes and functional assemblies. It is now recognized that they are highly prevalent and play important roles in biology and human diseases due to the presence of many representative conformational states and potential dynamic interactions, which requires computer simulations for describing disordered protein ensembles and dynamic interactions involved in biological functions, diseases, and therapeutics.
  • 145
  • 27 Oct 2021
Topic Review
Genome by Multidimensional Scaling
The positions of enhancers and promoters on genomic DNA remain poorly understood. Chromosomes cannot be observed during the cell division cycle because the genome forms a chromatin structure and spreads within the nucleus. However, high-throughput chromosome conformation capture (Hi-C) measures the physical interactions of genomes. In previous studies, DNA extrusion loops  were directly derived from Hi-C heat maps. By using Multidimensional Scaling (MDS), we can easily locate enhancers and promoters more precisely.
  • 167
  • 31 Oct 2021
Topic Review
Global Trends in Cancer Nanotechnology
This study presents a new way to investigate comprehensive trends in cancer nanotechnology research in different countries, institutions, and journals providing critical insights to prevention, diagnosis, and therapy. This paper applies the qualitative method of bibliometric analysis on cancer nanotechnology using the PubMed database during the years 2000-2021. Inspired by hybrid medical models and content-based and bibliometric features for machine learning models, our results show cancer nanotechnology studies have expanded exponentially since 2010. The highest production of articles in cancer nanotechnology is mainly from US institutions, with several countries notably the USA, China, UK, India, and Iran as concentrated focal points as centers of cancer nanotechnology research, especially in the last five years. The analysis shows the greatest overlap between nanotechnology and DNA, RNA, iron oxide or mesoporous silica, breast cancer, and cancer diagnosis and cancer treatment. Moreover, more than 50% of information related to the keywords, authors, institutions, journals, and countries are considerably investigated in the form of publications from the top 100 journals. This study has the potentials to provide past and current lines of research that can unmask comprehensive trends in cancer nanotechnology, key research topics, or pmost productive countries and authors in the field.
  • 112
  • 10 Sep 2021
Topic Review
Imaging Techniques for Cardiac Function
Cardiac imaging techniques include a variety of distinct applications with which we can visualize cardiac function non-invasively. Through different applications of physical entities such as sound waves, X-rays, magnetic fields, and nuclear energy, along with highly sophisticated computer hardware and software, it is now possible to reconstruct the dynamic aspect of cardiac function in many forms, from static images to high-definition videos and real-time three-dimensional projections.
  • 95
  • 19 Nov 2021
  • Page
  • of
  • 3