Topic Review
β-Adrenergic Stimulation
β-adrenergic receptor stimulation (β-ARS) is a physiological mechanism that regulates cardiovascular function under stress conditions or physical exercise, producing a positive inotropic (enhanced contraction), lusitropic (faster relaxation), and chronotropic (increased heart rate) effect. 
  • 2.7K
  • 04 Aug 2021
Topic Review
Vancomycin with Muramyl Pentapeptide
Vancomycin and a native muramyl pentapeptide ended with D-alanine (MPP-D-Ala), and vancomycin and a modified muramyl pentapeptide ended with D-serine (MPP-D-Ser) form complexes in a very specific way. This complexes provide a basis for characterizing the type and stability of the connection. The type of experimentally measured and computer-simulated interactions opens the field for discussion on possible modifications to the structure of vancomycin or muramyl pentapeptide to obtain their desired characteristics.
  • 627
  • 07 Feb 2022
Topic Review
Unique Properties of the Immune System
The human body is unquestionably one of the most complex systems known to humanity. There are three main regulation systems in the human body (the nervous system, the endocrine system and the immune system). These three systems are integrated into one ultimate information communication network within the human body. However, each regulation system has its specific roles and unique properties. Consequently, each of these regulation systems has served as inspiration for computational models to efficiently solve real-world problems. An overview of these models and their applications is presented.
  • 251
  • 01 Feb 2023
Topic Review
Transformer Architecture and Attention Mechanisms in Genome Data
The emergence and rapid development of deep learning, specifically transformer-based architectures and attention mechanisms, have had transformative implications across several domains, including bioinformatics and genome data analysis. The analogous nature of genome sequences to language texts has enabled the application of techniques that have exhibited success in fields ranging from natural language processing to genomic data. 
  • 306
  • 26 Jul 2023
Topic Review
Swarm Robotics
Swarm robotics is a dynamic research field that integrates two important concepts: Swarm Intelligence (SI) and Multi-Robotics System (MRS).
  • 556
  • 02 Jun 2022
Topic Review
State-of the-Art Constraint-Based Modeling of Microbial Metabolism
Methanotrophy is the ability of an organism to capture and utilize the greenhouse gas, methane, as a source of energy-rich carbon. Over the years, significant progress has been made in understanding of mechanisms for methane utilization, mostly in bacterial systems, including the key metabolic pathways, regulation and the impact of various factors (iron, copper, calcium, lanthanum, and tungsten) on cell growth and methane bioconversion. The implementation of -omics approaches provided vast amount of heterogeneous data that require the adaptation or development of computational tools for a system-wide interrogative analysis of methanotrophy. The genome-scale mathematical modeling of its metabolism has been envisioned as one of the most productive strategies for the integration of muti-scale data to better understand methane metabolism and enable its biotechnological implementation. 
  • 131
  • 03 Jan 2024
Topic Review
Smoothed-Particle Hydrodynamics
Smoothed-particle hydrodynamics is a computational mesh-free Lagrangian method developed by Gingold, Monaghan, and Lucy in 1977, initially intended for use in astrophysics.
  • 931
  • 08 Apr 2021
Topic Review
Real-World Driver Stress Recognition and Diagnosis
Mental stress is known as a prime factor in road crashes. The devastation of these crashes often results in damage to humans, vehicles, and infrastructure. Likewise, persistent mental stress could lead to the development of mental, cardiovascular, and abdominal disorders. Preceding research in this domain mostly focuses on feature engineering and conventional machine learning approaches.
  • 256
  • 19 Jun 2023
Topic Review
Predicting the Evolution of Syntenies
Syntenies are genomic segments of consecutive genes identified by a certain conservation in gene content and order. The notion of conservation may vary from one definition to another, the more constrained requiring identical gene contents and gene orders, while more relaxed definitions just require a certain similarity in gene content, and not necessarily in the same order. Regardless of the way they are identified, the goal is to characterize homologous genomic regions, i.e., regions deriving from a common ancestral region, reflecting a certain gene co-evolution that can enlighten important functional properties.
  • 526
  • 02 Jun 2021
Topic Review
Post-Stroke Movement with Motion Capture and Musculoskeletal Modeling
Research of post-stroke locomotion via musculoskeletal (MSK) modeling has offered an unprecedented insight into pathological muscle function and its interplay with skeletal geometry and external stimuli. Advances in solving the dynamical system of post-stroke effort and the generic MSK models used have triggered noticeable improvements in simulating muscle activation dynamics of stroke populations.
  • 468
  • 09 Dec 2022
  • Page
  • of
  • 5