Topic Review
Chelating Agents in Soil Remediation
The Fenton process is an efficient treatment for removing many organics pollutants in aqueous systems at acidic pH (2.8-3.5). However, the in-situ application of this technology for soil remediation (where pHs around neutrality are required) presents important limitations, such as catalyst (iron) availability and oxidant (H2O2) stability. The addition of chelating agents (CAs) makes iron soluble at circumneutral pH by forming complexes with Fe, and thus, enabling Fenton reactions under these conditions. This strategy, called chelate-modified Fenton process (MF), can be employed to overcome the challenges identified in conventional Fenton.
  • 443
  • 09 Aug 2021
Topic Review
Alarming Systems for Hazardous Gases and Volatile Chemicals
The leakage of hazardous gases and chemical vapors is considered one of the dangerous accidents that can occur in laboratories, workshops, warehouses, and industrial sites that use or store these substances. The early detection and alarming of hazardous gases and volatile chemicals are significant to keep the safety conditions for the people and life forms who are work in and live around these places.
  • 436
  • 15 Dec 2021
Topic Review
Modeling Approaches of Biogas Production
Biogas production is a relevant component in renewable energy systems. Model approaches of biogas production show different levels of detail. They can be classified as white, gray, and black box, or bottom-up and top-down approaches. On the one hand, biogas modeling can supply dynamic information on the anaerobic digestion process, e.g., to predict biogas yields or to optimize the anaerobic digestion process. These models are characterized by a bottom-up approach with different levels of detail: the comprehensive ADM1 (white box), simplifications and abstractions of AD models (gray box), or highly simplified process descriptions (black box). On the other hand, biogas production is included in energy system models. These models usually supply aggregated information on regional biogas potentials and greenhouse gas emissions. They are characterized by a top-down approach with a low level of detail. Most energy system models reported in literature are based on black box approaches. Considering the strengths and weaknesses of the integration of detailed and deeply investigated process models in energy system models reveals the opportunity to develop dynamic and fluctuating business models of biogas usage. 
  • 436
  • 29 Jul 2021
Topic Review
Waste Treatment Using Black Soldier Fly
Poor waste management has adverse impacts on the environment and human health. The recent years have seen increasing interest in using black soldier fly (BSF), Hermetia illucens, as an organic waste converter. Black soldier fly larvae (BSFL) feed voraciously on various types of organic waste, including food wastes, agro-industrial by-products, and chicken and dairy manure, and reduce the initial weight of the organic waste by about 50% in a shorter period than conventional composting. The main components of the BSFL system are the larvero, where the larvae feed and grow, and the fly house, where the adults BSF live and reproduce.
  • 436
  • 28 Apr 2022
Topic Review
Culture in Maintenance Management of Public Buildings
Culture is one of the significant elements that influence the behavior of doing things the right way, without which there is a hindrance to the attainment of set goals. It has also been stated that culture is essential to maintaining public buildings, which is significant to national development. However, the level of abandonment and deterioration of public buildings is high due to a lack of culture among stakeholders in the maintenance process.
  • 367
  • 08 Jun 2022
Topic Review
Stationary Fuel Cell System
Fuel cell technologies have several applications in stationary power production, such as units for primary power generation, grid stabilization, systems adopted to generate backup power, and combined-heat-and-power configurations (CHP). The main sectors where stationary fuel cells have been employed are (a) micro-CHP, (b) large stationary applications, (c) UPS, and IPS. The fuel cell size for stationary applications is strongly related to the power needed from the load. Since this sector ranges from simple backup systems to large facilities, the stationary fuel cell market includes few kWs and less (micro-generation) to larger sizes of MWs. The design parameters for the stationary fuel cell system differ for fuel cell technology (PEM, AFC, PAFC, MCFC, and SOFC), as well as the fuel type and supply.
  • 325
  • 09 Oct 2021
Topic Review
Paper-Based Sensors Application
Paper-based sensors are getting increasing attention for reliable indoor/outdoor onsite detection with non-expert operation due to low cost, portability, easy disposal, and high accuracy, as well as bulky reduced laboratory equipment. They have become powerful analysis tools in trace detection with ultra-low detection limits and extremely high accuracy, resulting in their great popularity in biological detection, environmental inspection, and other applications. However, the current paper-based sensors still encounter insufficiencies such as harsh storage, short shelf time, singleplex analyte detection, disability of holographic strain detection, and low reproducibility for direct detection of the actual sample without pretreatment. Efforts should be made to paper-based sensors with those concerns before their broad commercial application. 
  • 320
  • 22 Sep 2021
Topic Review
CWMFC
CWMFC is a novel technology that has been used for almost a decade for concurrent wastewater treatment and electricity generation in varying scopes of domestic, municipal, and industrial applications since its implementation in 2012. Its advantage of low-cost enhanced wastewater treatment and sustainable bioelectricity generation has gained considerable attention. Nevertheless, the overall efficiency of this novel technology is inclined by several operating factors and configuration strands, such as pH, sewage composition, organic loading, electrode material, filter media, electrogens, hydraulic retention time, and macrophytes. Here, we investigate the effect of the wetland plant component on the overall performance of CWMFCs. The macrophyte’s involvement in the oxygen input, nutrient uptake, and direct degradation of pollutants for the required treatment effect and bioelectricity production are discussed in more detail. The review identifies and compares planted and unplanted CWMFC with their efficiency on COD removal and electricity generation based on previous and recent studies.
  • 319
  • 17 Sep 2021
Topic Review
Chlorinated Aliphatic Hydrocarbons
Chlorinated aliphatic hydrocarbons (CAHs) are ubiquitous contaminants whose presence in groundwater has persisted for many decades, mainly due to the physical-chemical characteristics of these compounds. In particular, CAHs belong to Dense Non-Aqueous Phase Liquids (DNAPLs), for which contamination scenarios differ significantly from Light NAPLs scenarios, where the separate phase floats at the top of the water table due to its lower density than water.
  • 290
  • 28 Sep 2021
Topic Review
Carbon Fiber-Reinforced Polymer Composites
Due exceptional properties such as its high-temperature resistance, mechanical characteristics, and relatively lower price, the demand for carbon fiber has been increasing over the past years. The widespread use of carbon-fiber-reinforced polymers or plastics (CFRP) has attracted many industries.
  • 289
  • 10 Jun 2022
  • Page
  • of
  • 15
Top
Feedback