Topic Review
9–12% Cr Heat-Resistant Martensitic Steels
As a promising alloying approach, the modification of chemical composition by increasing the B content and decreasing the N content has been applied to improve the creep resistance of various 9–12% Cr heat-resistant martensitic steels. The 9–12% Cr steels have to exhibit high long-term creep strength, oxidation resistance in a high temperature steam, low cycle fatigue resistance, impact toughness, etc. The creep resistance is the main critical requirement: the minimum long-term creep rupture strength on the base of 100,000 h should be 100 MPa or higher at 650 °C. 
  • 76
  • 20 Sep 2022
Topic Review
Abrasive Wear of Cermets
Abrasive wear occurs when hard particles or sometimes hard protuberances on a counterface are forced against and are moved along the surface. The amount of material removed depends on the normal load pressing particles against the surface and the sliding distance. A distinction is usually made between the two-body and the three-body abrasive wear and between low-stress (abrasive particles remain unbroken during abrasion) and high-stress (abrasive particles are broken during the wear process) abrasion. WC-based hardmetals (cemented carbides) are employed widely as wear-resistant ceramic-metal composites for tools and wear parts. Raw materials supply, environmental concerns and some limitations of hardmetals have directed efforts toward development of alternative wear-resistant composites-cermets. Cermets consist primarily of ceramic particles such as titanium carbonitride (Ti(C,N)), titanium carbide (TiC), and chromium carbide (Cr3C2) bonded with alloys of Ni, Co or Fe. Cermets as resistant to abrasive wear materials demonstrate their potential mainly in environmentally severe wear conditions – at elevated temperatures and corrosive envronments.
  • 231
  • 10 Jan 2022
Topic Review
Additive Manufacturing of High Entropy Alloys
Alloying has been very common practice in materials engineering to fabricate metals of desirable properties for specific applications. Traditionally, a small amount of the desired material is added to the principal metal. However, a new alloying technique emerged in 2004 with the concept of adding several principal elements in or near equi-atomic concentrations. These are popularly known as high entropy alloys (HEAs) which can have a wide composition range.
  • 441
  • 15 Mar 2022
Topic Review
Additive Manufacturing of Magnesium-Based Alloys through Laser-Based Approach
Magnesium alloys continue to be important in the context of modern and lightweight technologies. The increased use of Mg each year indicates a rise in demand for alloys containing Mg. With additive manufacturing (AM), components can be produced directly in a net shape, providing new ideas relating to the new prospects for Mg-based materials. 
  • 66
  • 23 Nov 2022
Topic Review
Additive Manufacturing of Turbine Blades
Additive manufacturing is a technology of transforming a 3D prototype to a physical one directly by successive addition of the required material in a layer-by-layer manner. This technique helps to manufacture the turbine blade which is the revolution of green technology for high temperature engine parts.
  • 346
  • 11 Oct 2022
Topic Review
Aluminum Alloy 5083
The semi-solid metal (SSM) 5083 aluminum alloy was developed for part manufacturing in the marine shipbuilding industry and including other industries using this material in the manufacture of parts.
  • 484
  • 08 Oct 2021
Topic Review
Applications of Magnesium and Alloys
Since its discovery, magnesium has played an influential role in society. In its early days, military applications and wars fueled its growth. For example, magnesium was weaponized to construct incendiary bombs, flares, and ammunitions that were subsequently deployed in World War II, and it caused massive conflagrations and widespread devastations. Post-War, magnesium’s availability and unique blend of properties were explored and were found to be highly attractive for an extensive range of applications. Today, magnesium is used for engineering applications in automotive, aerospace, and consumer electronics. In addition, it has a role in organic chemistry and pharmaceuticals and is used to construct several general-purpose applications, such as sporting goods, household products, and office equipment.
  • 376
  • 09 Oct 2021
Topic Review
Artisanal and Small-Scale Gold Mining
The aim of this work is to explain the concepts of sustainability with respect to small artisanal gold mining. For this, a qualitative approach with a descriptive scope was used, for which the bibliographic review technique was conducted. In this sense, articles, theses, books and institutional documents, and any contribution related to the research topic were taken into consideration. Likewise, this documentation contributed to the delimiting aspects that allowed a contrast between the proposed definitions and small artisanal mining in the Northeast Antioquia region in Colombia. Based on the reviewed sources, different needs were recognized in artisanal small-scale gold mining in Northeast Antioquia that still need action. In conclusion, through the exposition of sustainability theories, three common factors were identified within the various positions that were raised—the environmental, economic, and sociocultural dimensions. 
  • 251
  • 27 Aug 2021
Topic Review
Beneficiation of Rare Earth Elements
The rapid depletion of high-grade rare earth elements (REE) resources implies that future supplies may be augmented with low-grade ores, tailings, and other unconventional resources to meet cut-off grades and, subsequently, supply demands. There are distinct differences in the beneficiation response of REE and gangue minerals in the tailings. Gravity, wet magnetic, and froth flotation separation methods produced significantly varying REE recoveries and upgrades. Tabling presented a better potential for REE minerals upgrade compared to the Knelson Concentrator (KC). However, wet magnetic separation produced two REE “rich” preconcentrates. The two REE preconcentrates were subsequently upgraded via froth flotation. In terms of recovery, the best result was achieved during the multistage flotation process carried out on the tailings “feed” in the presence of hydroxamic acid and depressants. With high recoveries obtained using such readily available conventional separation methods, the tailings provide additional REE value to the primary commodities.
  • 145
  • 24 May 2022
Topic Review
Biobeneficiation of PGMs
Conventional beneficiation of the Platinum Group of Metals (PGMs) relies on the use of inorganic chemicals. With the depreciation of high grade deposits, these conventional processes are becoming less economically viable. Furthermore, the use of chemicals has serious negative impacts on the environment. To address the challenges of conventional PGM beneficiation, biobeneficiation has been proposed. Bio-beneficiation is the concentration of mineral species by employing microorganisms that interact with either the gangue or the valuable mineral species. Bio-beneficiation can also be described as the use of microorganisms to interact with minerals to subsequently induce processes such as magnetic separation, flotation, and flocculation.
  • 119
  • 19 Jan 2022
  • Page
  • of
  • 5