Topic Review
The γ” Phase in Mg-RE-TM Alloys
In magnesium–rare earth–transition metal (Mg-RE-TM) alloys, the γ” phase (with a hexagonal structure with the space group P6¯2m) is a critical strengthening phase that can significantly improve their mechanical properties. However, compared to other phases in Mg-RE-TM alloys, research on the γ” phase is less documented, and an understanding of the γ” phase is not well established
  • 178
  • 22 Nov 2023
Topic Review
Stir Casting Routes for Metal Matrix Syntactic Foams
Metal matrix syntactic foams (MMSFs) are advanced lightweight materials constituted by a metallic matrix and a dispersion of hollow and/or porous fillers. Physical and mechanical properties can be fitted regarding matrix and filler properties and processing parameters. Their properties make them potential materials for sectors where density is a limiting parameter, such as transport, marine, defense, aerospace, and engineering applications. MMSFs are mainly manufactured by powder metallurgy, infiltration, and stir casting techniques. Stir casting techniques (SCTs) are low-cost and industrially scalable approaches. Critical limitations of SCTs are buoyancy of fillers, corrosion of processing equipment, premature solidification of molten metal during mixing, cracking of fillers, heterogeneous distribution, and limited incorporation of fillers. Efforts to overcome these limitations have led to the development of new techniques and to obtain MMSFs with improved properties.
  • 421
  • 19 Apr 2022
Topic Review
Steel Structural Property Correlation
The behaviour of plain carbon, as well as, structural steel is qualitatively different at different regimes of strain rates and temperature when they are subjected to hot-working and impact-loading conditions. Ambient temperature and carbon content are the leading factors governing the deformation behaviour and substructural evolution of these steels.
  • 670
  • 29 Jul 2022
Topic Review
Solid-State Welding of Steels
Welding is a joining process that permanently connects solid parts and forms components that cannot be divided without causing damage. Furthermore, welding is the most efficient and economical way to join similar or dissimilar materials with or without using filler material, heat, or external pressure. Welding can be processed in a variety of environments, including outdoors, inside, underwater, and even in outer space. The two main categories of welding methods, solid-state welding (SSW) and fusion welding, are processes to join metals. Fusion welding can be defined as the melting process of parent materials on facing surfaces with a filler material to form a weld bead. The fusion welding process comprises gas welding, arc welding, and intense-energy beam welding.
  • 570
  • 06 Jan 2023
Topic Review
Sn on Ag-Based Brazing Filler Metals
Ag-based brazing filler metals containing Sn have been widely applied in many engineering fields. By summarizing the effects of Sn on the melting temperature, wettability and microstructure, and mechanical properties of the filler metals, the Sn element can significantly decrease the melting point and improve the wettability, and proper addition of Sn can optimize the microstructure and improve the comprehensive properties of the filler metals, while excessive addition of Sn will form brittle IMCs and decrease the mechanical properties of the filler metals.
  • 590
  • 29 Nov 2021
Topic Review
Roll Bonding Processes
The roll bonding (RB) process involves joining of two or more sheets of similar or dissimilar materials at various temperatures. The process requires rolling through a pair of rollers under adequate pressure resulting in the bonding of sheets. The process is categorized into three types, i.e., cold, hot, and warm roll bonding based on the ranges of the processing temperature which in turn is related to the recrystallization temperature.
  • 1.8K
  • 03 Sep 2021
Topic Review
Restoration of Soils and Groundwater Contaminated by Explosives
Soil pollution resulting from explosives represents a critical environmental challenge. While physical methods like excavation and disposal are effective, their applicability is constrained by cost and logistical challenges for large contaminated areas. Chemical methods, such as oxidation and reduction, focus on transforming explosives into less toxic byproducts. Biological remediation utilizing plants and microorganisms emerges as a cost-effective and sustainable alternative. 
  • 62
  • 31 Jan 2024
Topic Review
Residual Stress Measurement Techniques for Railway Components
Manufacturing and maintenance procedures in the railway industry regularly implement welding and metal deposition operations to produce joints, coatings and repair structures. During these processes, residual stresses arise through the generation of heat affected zones and plastic deformation. This makes accurate measurements of the internal stresses a critical aspect of manufacturing, monitoring, repair and model validation in the develop new metallic coating and joining technologies. Selection of an appropriate residual stress measurement method has many important factors including component size, resolution and the magnitude and location of internal stresses, often resulting in a combination of techniques required to obtain complete assessment of the stress state. 
  • 439
  • 13 Jan 2023
Topic Review
Residual Stress Impingement Methods and Environmental Fracture Susceptibility
Metallic components undergo stress due to externally applied forces and/or internal residual forces, with the latter often originating from thermally induced deformation during production or from the forming and machining processes. Over time in service, these stresses may act in concert with the surrounding environment, component geometry, surface defects, corrosion, and more to induce subcritical damage in the form of fatigue, corrosion fatigue, or environmentally assisted cracking (EAC). To combat such degradation, numerous residual stress impingement (RSI) methods have been developed with varying levels of efficacy and ease of use. This entry summarizes the benefits and detriments of leading RSI treatments towards corrosion, corrosion fatigue, and EAC in a range of engineering alloys as a function of material hardness. 
  • 433
  • 19 Nov 2021
Topic Review
Rare-Earth Magnets
Permanent magnets today are used in a wide range of transportation, industrial, residential/commercial, consumer electronics, defense, domestic, data storage, wind energy, and medical markets and applications.
  • 205
  • 30 Oct 2023
  • Page
  • of
  • 9