Topic Review
Zeolites as Catalyst Supports for Hydrocarbon Oxidation Reactions
Catalytic oxidation is a key technology for the conversion of petroleum-based feedstocks into useful chemicals (e.g., adipic acid, caprolactam, glycols, acrylates, and vinyl acetate) since this chemical transformation is always involved in synthesis processes. Zeolites are microporous, crystalline aluminosilicate materials known since 1756 when the stilbite structure was identified by the Swedish mineralogist Crönstedt. Zeolites and other related porous materials can be supports for organometallic or metallic active species. These materials are the most studied supports due to their combined properties of mechanical and thermal stability that allows it an easy regeneration and recycling. 
  • 638
  • 25 Mar 2022
Topic Review
Zeolites as Carriers of Nano-Fertilizers
The world is facing immense challenges in terms of food security, due to the combined impacts of the ever-increasing population and the adversity of climate change. In an attempt to counteract these factors, smart nutrient delivery systems, including nano-fertilizers, additives, and material coatings, have been introduced to increase food productivity to meet the growing food demand. Use of nanocarriers in agro-practices for sustainable farming contributes to achieving up to 75% nutrient delivery for a prolonged period to maintain nutrient availability in soil for plants in adverse soil conditions.
  • 856
  • 29 Sep 2022
Topic Review
Working Principle of Polymer-Based Nanogenerators Using Environmental Energy
Natural environment hosts a considerable amount of accessible energy, comprising mechanical, thermal, and chemical potentials. Environment-induced nanogenerators are nanomaterial-based electronic chips that capture environmental energy and convert it into electricity in an environmentally friendly way. Polymers, characterized by their superior flexibility, lightweight, and ease of processing, are considered viable materials.
  • 63
  • 01 Mar 2024
Topic Review
Wood Ash Based Treatment of Anaerobic Digestate
The anaerobic digestion (AD) was first applied to deal with the sewage sludge (SS) produced during the primary and secondary treatment of wastewater, but its use to deal with agro-waste and the MSW with around 70% of organic material has been subsequently encouraged.
  • 531
  • 21 Jan 2022
Topic Review
Water-Soluble Vitamins
Vitamins are essential micronutrients in diets that ensure the biochemical functions of the human body and prevent diseases. They act as antioxidants, hormones, and mediators for cell signaling, cell/tissues regulators, and differentiation. They are sensitive compounds that are degraded during cooking and storage processes by factors such as light, heat, oxygen, moisture, pH, time, and reducing agents. Consequently, vitamin encapsulation can overcome limitations associated with external agents such as oxidants, heat, and low solubility, and promotes effective delivery into the body. Water-soluble and fat-soluble vitamins are two main groups of this type of micronutrient. Water-soluble vitamins are important for growth, development, and human body function. 
  • 888
  • 23 May 2022
Topic Review
Water Activity Prediction
Water activity is one of the most important factors influencing the quality and stability of food, cosmetic, and pharmaceutical products.
  • 425
  • 27 Oct 2021
Topic Review
Waste Plastic Thermal Pyrolysis
Pyrolysis is one of the most popular thermo-chemical treatment (TCT) methods known today. This is due to their immense impacts on the environment and their operational output. The significant role of pyrolysis with waste plastics as feedstock is trending. Most of these waste plastics which include high-density polyethylene (HDPE), low-density polyethylene (LDPE), polyethylene terephthalate (PET) and polystyrene (PS), have continued to render our environment, our health and oceans in deplorable conditions. This entry presents an assurance into the current findings of waste plastic thermal pyrolysis (WPTP) and revealed some common research gaps and misconceptions surrounding this field. 
  • 1.4K
  • 04 Mar 2022
Topic Review
Waste Plastic Recycling and Technology
Plastic waste recycling refers to the waste management process that collects plastic waste materials and turns them into raw materials reused to produce other valuable products. Recycling is not only a method for disposing of plastic waste, but it is also an effective process to minimize the need for virgin plastics, which can help lessen global warming. According to the ASTM Standard D5033, plastic recycling can be categorized as primary, secondary, tertiary, and quaternary recycling. Based on the mechanism of the methods, plastic waste recycling can be classified as mechanical, chemical, and biological recycling. Chemical recycling, such as catalytic and thermal processes, can convert plastic waste into value-added chemicals/fuels. This process is a potential method to reduce plastic waste as a primary source of environmental issues.
  • 2.6K
  • 04 Aug 2022
Topic Review Video
Waste Plastic Pyrolytic Catalysis
With the increase in demand for plastic use, waste plastic (WP) management remains a challenge in the contemporary world due to the lack of sustainable efforts to tackle it. The increment in WPs is proportional to man’s demand and use of plastics, and these come along with environmental challenges. This increase in WPs, and the resulting environmental consequences are mainly due to the characteristic biodegradation properties of plastics. Landfilling, pollution, groundwater contamination, incineration, and blockage of drainages are common environmental challenges associated with WPs. The bulk of these WPs constitutes polyethene (PE), polyethene terephthalate (PET) and polystyrene (PS). Pyrolysis is an eco-friendly thermo-chemical waste plastic treatment solution for valuable product recovery, preferred over landfilling and incineration solutions.
  • 900
  • 24 Apr 2022
Topic Review
Valorization of Bread Waste into Value-Added Products
Bread is a universal food that is sold and consumed across the entire social and geographical spectrum. Bread waste is currently of increasing interest, as it is considered a huge global issue with serious environmental impacts and significant economic losses that have become even greater in the post-pandemic years due to an increase in cereal prices, which has led to higher production costs and bread prices. Meanwhile, many efforts have been initiated in the past decades to investigate methods of repurposing bread residues into fuel and chemicals such as bioethanol, biohydrogen, succinic acid, and various added-value products that can be exploited in versatile industries.
  • 969
  • 09 Dec 2022
  • Page
  • of
  • 24