Topic Review
Microcystin-LR in Primary Liver Cancers
Among all of the variants of MCs, MC-LR has been widely studied due to its severe hepatotoxicity. Since 1992, various studies have discovered the important role of MC-LR in the origin and progression of primary liver cancers (PLCs), while few reviews have focused on it. Based on the available literature, the mechanisms of how MC-LR induces or promotes PLCs are elucidated in this review. This review aims to enhance our understanding of the role that MC-LR plays in PCLs and provides a rational approach for future applications.
  • 19
  • 10 Nov 2022
Topic Review
Submarine Canyon
A submarine canyon is a steep-sided valley cut into the seabed of the continental slope, sometimes extending well onto the continental shelf, having nearly vertical walls, and occasionally having canyon wall heights of up to 5 km, from canyon floor to canyon rim, as with the Great Bahama Canyon. Just as above-sea-level canyons serve as channels for the flow of water across land, submarine canyons serve as channels for the flow of turbidity currents across the seafloor. Turbidity currents are flows of dense, sediment laden waters that are supplied by rivers, or generated on the seabed by storms, submarine landslides, earthquakes, and other soil disturbances. Turbidity currents travel down slope at great speed (as much as 70 km/h), eroding the continental slope and finally depositing sediment onto the abyssal plain, where the particles settle out. About 3% of submarine canyons include shelf valleys that have cut transversely across continental shelves, and which begin with their upstream ends in alignment with and sometimes within the mouths of large rivers, such as the Congo River and the Hudson Canyon. About 28.5% of submarine canyons cut back into the edge of the continental shelf, whereas the majority (about 68.5%) of submarine canyons have not managed at all to cut significantly across their continental shelves, having their upstream beginnings or "heads" on the continental slope, below the edge of continental shelves. The formation of submarine canyons is believed to occur as the result of at least two main process: 1) erosion by turbidity current erosion; and 2) slumping and mass wasting of the continental slope. While at first glance, the erosion patterns of submarine canyons may appear to mimic those of river-canyons on land, due to the markedly different erosion processes that have been found to take place underwater at the soil/ water interface, several notably different erosion patterns have been observed in the formation of typical submarine canyons. Many canyons have been found at depths greater than 2 km below sea level. Some may extend seawards across continental shelves for hundreds of kilometres before reaching the abyssal plain. Ancient examples have been found in rocks dating back to the Neoproterozoic. Turbidites are deposited at the downstream mouths or ends of canyons, building an abyssal fan.
  • 31
  • 09 Nov 2022
Topic Review
California Current
The California Current is a Pacific Ocean current that moves southward along the western coast of North America, beginning off southern British Columbia and ending off southern Baja California Sur. It is considered an Eastern boundary current due to the influence of the North American coastline on its course. It is also one of five major coastal currents affiliated with strong upwelling zones, the others being the Humboldt Current, the Canary Current, the Benguela Current, and the Somali Current. The California Current is part of the North Pacific Gyre, a large swirling current that occupies the northern basin of the Pacific.
  • 40
  • 08 Nov 2022
Topic Review
Deep Sea Fish
Deep-sea fish are animals that live in the darkness below the sunlit surface waters, that is below the epipelagic or photic zone of the sea. The lanternfish is, by far, the most common deep-sea fish. Other deep sea fishes include the flashlight fish, cookiecutter shark, bristlemouths, anglerfish, viperfish, and some species of eelpout. Only about 2% of known marine species inhabit the pelagic environment. This means that they live in the water column as opposed to the benthic organisms that live in or on the sea floor. Deep-sea organisms generally inhabit bathypelagic (1000–4000m deep) and abyssopelagic (4000–6000m deep) zones. However, characteristics of deep-sea organisms, such as bioluminescence can be seen in the mesopelagic (200–1000m deep) zone as well. The mesopelagic zone is the disphotic zone, meaning light there is minimal but still measurable. The oxygen minimum layer exists somewhere between a depth of 700m and 1000m deep depending on the place in the ocean. This area is also where nutrients are most abundant. The bathypelagic and abyssopelagic zones are aphotic, meaning that no light penetrates this area of the ocean. These zones make up about 75% of the inhabitable ocean space. The epipelagic zone (0–200m) is the area where light penetrates the water and photosynthesis occurs. This is also known as the photic zone. Because this typically extends only a few hundred meters below the water, the deep sea, about 90% of the ocean volume, is in darkness. The deep sea is also an extremely hostile environment, with temperatures that rarely exceed 3 °C (37.4 °F) and fall as low as −1.8 °C (28.76 °F) (with the exception of hydrothermal vent ecosystems that can exceed 350 °C, or 662 °F), low oxygen levels, and pressures between 20 and 1,000 atmospheres (between 2 and 100 megapascals).
  • 123
  • 08 Nov 2022
Topic Review
Grey Water
Grey water (also spelled gray water in the United States) or sullage refers to wastewater generated in households or office buildings from streams without fecal contamination, i.e., all streams except for the wastewater from toilets. Sources of grey water include sinks, showers, baths, washing machines or dishwashers. As grey water contains fewer pathogens than domestic wastewater, it is generally safer to handle and easier to treat and reuse onsite for toilet flushing, landscape or crop irrigation, and other non-potable uses. The application of grey water reuse in urban water systems provides substantial benefits for both the water supply subsystem, by reducing the demand for fresh clean water, and the wastewater subsystems by reducing the amount of wastewater required to be conveyed and treated. Treated grey water has many uses, for example, toilet flushing or irrigation.
  • 34
  • 04 Nov 2022
Topic Review
NOAAS Okeanos Explorer
NOAAS Okeanos Explorer (R 337) is a converted United States Navy ship (formerly USNS Capable (T-AGOS-16)), now an exploratory vessel for the National Oceanic and Atmospheric Administration (NOAA), officially launched in 2010. Starting in 2010, NOAA entered into a five-year partnership with the San Francisco Exploratorium. The focus is on gathering scientific information about oceans for the public as well as for scientific uses. As much as 95% of the ocean remains unexplored, NOAA officials said. The ship is equipped with cameras and will provide real-time viewing of the ocean floor for scientists and for the public. This is a pioneering use of what NOAA calls "telepresence technology". The Okeanos Explorer is the only vessel owned by the U.S. government that is dedicated to exploring the seabed and ocean crust. The ship is named after Okeanos, the Ancient Greek god of the sea, from which also comes the word "ocean".
  • 29
  • 04 Nov 2022
Topic Review
Bathymetric Chart
A bathymetric chart is a type of isarithmic map that depicts the submerged topography and physiographic features of ocean and sea bottoms. Their primary purpose is to provide detailed depth contours of ocean topography as well as provide the size, shape and distribution of underwater features. Topographic maps display elevation above ground and are complementary to bathymetric charts. Charts use a series of lines and points at equal intervals to showcase depth or elevation. A closed shape with increasingly smaller shapes inside of it can indicate an ocean trench or a seamount, or underwater mountain, depending on whether the depths increase or decrease going inward.Bathymetric surveys and charts are associated with the science of oceanography, particularly marine geology, and underwater engineering or other specialized purposes. thumb|Bathymetric Map of Medicine Lake, CABathymetric data used to produce charts can also be converted to bathymetric profiles which are vertical sections through a feature.thumb|right|Bathymetric chart of Bear Lake
  • 27
  • 03 Nov 2022
Topic Review
Marine Isotope Stage
Marine isotope stages (MIS), marine oxygen-isotope stages, or oxygen isotope stages (OIS), are alternating warm and cool periods in the Earth's paleoclimate, deduced from oxygen isotope data reflecting changes in temperature derived from data from deep sea core samples. Working backwards from the present, which is MIS 1 in the scale, stages with even numbers have high levels of oxygen-18 and represent cold glacial periods, while the odd-numbered stages are lows in the oxygen-18 figures, representing warm interglacial intervals. The data are derived from pollen and foraminifera (plankton) remains in drilled marine sediment cores, sapropels, and other data that reflect historic climate; these are called proxies. The MIS timescale was developed from the pioneering work of Cesare Emiliani in the 1950s, and is now widely used in archaeology and other fields to express dating in the Quaternary period (the last 2.6 million years), as well as providing the fullest and best data for that period for paleoclimatology or the study of the early climate of the Earth, representing "the standard to which we correlate other Quaternary climate records". Emiliani's work in turn depended on Harold Urey's prediction in a paper of 1947 that the ratio between oxygen-18 and oxygen-16 isotopes in calcite, the main chemical component of the shells and other hard parts of a wide range of marine organisms, should vary depending on the prevailing water temperature in which the calcite was formed. Over 100 stages have been identified, currently going back some 6 million years, and the scale may in future reach back up to 15 mya. Some stages, in particular MIS 5, are divided into sub-stages, such as "MIS 5a", with 5 a, c, and e being warm and b and d cold. A numeric system for referring to "horizons" (events rather than periods) may also be used, with for example MIS 5.5 representing the peak point of MIS 5e, and 5.51, 5.52 etc. representing the peaks and troughs of the record at a still more detailed level. For more recent periods, increasingly precise resolution of timing continues to be developed.
  • 15
  • 03 Nov 2022
Topic Review
Water Resource Management
Water resource management is the activity of planning, developing, distributing and managing the optimum use of water resources. It is an aspect of water cycle management. Water is essential for our survival. The field of water resources management will have to continue to adapt to the current and future issues facing the allocation of water. With the growing uncertainties of global climate change and the long-term impacts of past management actions, this decision-making will be even more difficult. It is likely that ongoing climate change will lead to situations that have not been encountered. As a result, alternative management strategies, including participatory approaches and adaptive capacity are increasingly being used to strengthen water decision-making. Ideally, water resource management planning has regard to all the competing demands for water and seeks to allocate water on an equitable basis to satisfy all uses and demands. As with other resource management, this is rarely possible in practice so decision-makers must prioritise issues of sustainability, equity and factor optimisation (in that order!) to achieve acceptable outcomes. One of the biggest concerns for our water-based resources in the future is the sustainability of the current and future water resource allocation. As water becomes scarce, the importance of water management grows vastly—finding a balance between humans' needs and the essential step of water resources sustainability in the environment.
  • 16
  • 03 Nov 2022
Topic Review
Club of Rome
Founded in 1968 at Accademia dei Lincei in Rome, Italy, the Club of Rome consists of current and former heads of state, UN bureaucrats, high-level politicians and government officials, diplomats, scientists, economists, and business leaders from around the globe. It stimulated considerable public attention in 1972 with the first report to the Club of Rome, The Limits to Growth. Since 1 July 2008 the organization has been based in Winterthur, Switzerland.
  • 10
  • 02 Nov 2022
  • Page
  • of
  • 14
Top
Feedback