Topic Review
VARTM Processed Composite Materials
Fiber-reinforced composite structures are used in different applications due to their excellent strength to weight ratio. Due to cost and tool handling issues in conventional manufacturing processes, like resin transfer molding (RTM) and autoclave, vacuum-assisted resin transfer molding (VARTM) is the best choice among industries. VARTM is highly productive and cheap. However, the VARTM process produces complex, lightweight, and bulky structures, suitable for mass and cost-effective production, but the presence of voids and fiber misalignment in the final processed composite influences its strength. Voids are the primary defects, and they cannot be eliminated completely, so a design without considering void defects will entail unreliability. Many conventional failure theories were used for composite design but did not consider the effect of voids defects, thus creating misleading failure characteristics.
  • 4.0K
  • 07 Apr 2021
Topic Review
Coordination Polymers
Coordination polymers are solid-state structures consisting of repeating coordination units extending in one, two or three dimensions. Fields applications of the coordination polymers in general and metal-organic frameworks in particular are briefly discussed.
  • 3.7K
  • 31 Jul 2020
Topic Review
Non-Ionic Surfactants
Surfactants are essential in the manufacture of polymeric nanoparticles by emulsion formation methods and to preserve the stability of carriers in liquid media. The deposition of non-ionic surfactants at the interface allows a considerable reduction of the globule of the emulsion with high biocompatibility and the possibility of oscillating the final sizes in a wide nanometric range.
  • 3.7K
  • 29 Jun 2021
Topic Review
Porous Carbon
Porous carbons are an important class of porous materials that have grown rapidly in recent years. They have the advantages of a tunable pore structure, good physical and chemical stability, a variable specific surface, and the possibility of easy functionalization.   
  • 3.6K
  • 29 Dec 2020
Topic Review
Aloe vera
Aloe vera plant offers a sustainable solution for the removal of various pollutants from water. Due to its chemical composition, Aloe vera has been explored as coagulant/flocculant and biosorbent for water treatment. 
  • 3.5K
  • 23 Jun 2021
Topic Review
Contact Lens Materials - A Materials Science Perspective
Contact lens materials are typically based on polymer- or silicone-hydrogel, with additional manufacturing technologies employed to produce the final lens. These processes are simply not enough to meet the increasing demands from CLs and the ever-increasing number of contact lens (CL) users. New materials and engineering offer increasing functionality or improved properties over previous generations.
  • 3.2K
  • 27 Jan 2022
Topic Review
Pyrolysis
Pyrolysis: Thermochemical decomposition of organic materials in the absence of oxygen. Polymer-derived carbon: Carbon obtained by heat-treatment (pyrolysis followed by carbon-carbon bond formation and rearrangement) of natural or synthetic polymers. In addition to the supplied heat, surrounding gaseous environment, presence of magnetic field and applied pressure influence pyrolysis.
  • 3.2K
  • 01 Nov 2020
Topic Review
Overview of Polylactic Acid
Poly(lactic acid) (PLA) is an important polymer that is based on renewable biomass resources. Because of environmental issues, more renewable sources for polymers synthesis have been sought for industrial purposes.
  • 3.1K
  • 20 Jul 2022
Topic Review
Poly(lactic Acid)
Poly(lactic Acid) is one of the most promising polymers used in these applicationsand is properly called “polymer of the 21st century “. It is the only one, synthesized on a greater scale that is concurrently: biocompatible, biodegradable and biobased. PLA is an aliphatic biobased polyester derived from lactic acid (2-hydroxypropionic acid), which is mostly derived from animal or plant sources such as cellulose, starch, corn, fish waste and kitchen waste.
  • 3.1K
  • 15 Jun 2021
Topic Review
Covalent Adaptable Networks
Thermosets are known to be very reliable polymeric materials for high-performance and light-weight applications, due to their retained dimensional stability, chemical inertia and rigidity over a broad range of temperatures. However, once fully cured, they cannot be easily reshaped or reprocessed, thus leaving still unsolved the issues of recycling and the lack of technological flexibility. Vitrimers, introduced by Leibler et al. in 2011, are a valiant step in the direction of bridging the chasm between thermoplastics and thermosets. Owing to their dynamic covalent networks, they can retain mechanical stability and solvent resistance, but can also flow on demand upon heating. More generally, the family of Covalent Adaptable Networks (CANs) is gleaming with astounding potential, thanks to the huge variety of chemistries that may enable bond exchange. Arising from this signature feature, intriguing properties such as self-healing, recyclability and weldability may expand the horizons for thermosets in terms of improved life-span, sustainability and overall enhanced functionality and versatility. In this review, we present a comprehensive overview of the most promising studies featuring CANs and vitrimers specifically, with particular regard for their industrial applications. Investigations into composites and sustainable vitrimers from epoxy-based and elastomeric networks are covered in detail.
  • 2.9K
  • 26 Oct 2020
  • Page
  • of
  • 46