Topic Review
Advances in Conducting Polymers for Healthcare Monitoring
Conducting polymers (CPs) are an innovative class of materials recognized for their high flexibility and biocompatibility, making them an ideal choice for health monitoring applications that require flexibility. They are active in their design. Advances in fabrication technology allow the incorporation of CPs at various levels, by combining diverse CPs monomers with metal particles, 2D materials, carbon nanomaterials, and copolymers through the process of polymerization and mixing. This method produces materials with unique physicochemical properties and is highly customizable. In particular, the development of CPs with expanded surface area and high conductivity has significantly improved the performance of the sensors, providing high sensitivity and flexibility and expanding the range of available options. However, due to the morphological diversity of new materials and thus the variety of characteristics that can be synthesized by combining CPs and other types of functionalities, choosing the right combination for a sensor application is difficult but becomes important. 
  • 84
  • 07 Feb 2024
Topic Review
Aerogels for the Removal of Heavy Metal Ions
Aerogel is a general term referring to novel nanostructured materials characterized by very high porosity and tunable physicochemical properties that are obtained following a sol–gel process and an appropriate drying method. Such novel materials are entering the market in everyday products and a wide portfolio of properties usable for applications in health care, foods, agriculture, energy, and environmental remediation. Bio-based aerogels obtained from renewable resources and biomass are biodegradable and biocompatible due to the natural origin of the polymers, and for this reason, they greatly contribute to the sustainable concept of the bio-economy, offering promising commodities for environmental remediation.
  • 101
  • 22 Jan 2024
Topic Review
Agarose Hydrogels
Numerous compounds present in the ocean are contributing to the development of the biomedical field. Agarose, a polysaccharide derived from marine red algae, plays a vital role in biomedical applications because of its reversible temperature-sensitive gelling behavior, excellent mechanical properties, and high biological activity. Natural agarose hydrogel has a single structural composition that prevents it from adapting to complex biological environments.
  • 575
  • 26 May 2023
Topic Review
Aggregation-Induced Emission and Fluorescent Mechanochromism
Mechanochromic fluorescent polymers are defined as materials that are able to detect a mechanical stress through a fluorescence output. This feature has evoked a growing interest in the last decades, thanks to the progress of fluorogenic molecules whose optical characteristics and chemical functionalities allow their effective insertion in many thermoplastic and thermoset matrices. Among the different types of fluorogenic probes able to detect mechanical solicitations, those with aggregation-induced emission (i.e., AIEgens) have attracted tremendous interest since their discovery in 2001. In this contribution, the main principles behind the AIEgens working behavior are introduced along with the current state of knowledge concerning the design and preparation of the derived mechanochromic fluorescent polymers. Examples are provided concerning the most ingenious solution for the preparation of chromogenic materials, starting from dierent types of commodity plastics or synthetic polymers and combined with the latest AIE technology to provide the most sensitive response to mechanical stress.
  • 2.6K
  • 30 Oct 2020
Topic Review
Aggregation-Induced Emission Properties in Polymers
Aggregation-Induced Emission (AIE) is a phenomenon that consists of the appearance of fluorescence in solid state or aggregation greater than that of molecules in solution and has recently attracted the attention of the scientific community because of their potential applications in different fields. Compared to small molecules, little attention has been paid to polymers and oligomers that exhibit AIE, despite having excellent properties such as high emission efficiency in aggregate and solid states, signal amplification effect, good processability and the availability of multiple functionalization sites. In addition to these features, if the molecular structure is fully conjugated, intramolecular electronic interactions between the composing chromophores may appear, thus giving rise to a wealth of new photophysical properties. In this review, we focus on selected fully conjugated oligomers, dendrimers and polymers, and briefly summarize their synthetic routes, fluorescence properties and potential applications. An exhaustive comparison between spectroscopic results in solution and aggregates or in solid state has been collected in almost all examples, and an opinion on the future direction of the field is briefly stated.
  • 632
  • 02 Feb 2021
Topic Review
Aging Performance of Polymer-Modified Binders
The term “aging of polymer-modified binder”, as well as the term “bitumen aging” in a generalized form, combines the whole set of reversible and irreversible changes in its chemical composition, physical transformations, and changes in structural and mechanical properties occurring during the production of polymer-modified binders, its storage/transportation, technological processing, and operation, i.e., during the entire lifecycle of the polymer-modified binder. Polymer-modified binders are complex multicomponent systems in which polymer and other additives, if available, make a significant contribution to the aging process.
  • 87
  • 15 Dec 2023
Topic Review
Agricultural Applications of Superabsorbent Polymer Hydrogels
Although natural polymers, such as various polysaccharides, have undoubted advantages related to their biocompatibility, biodegradability, and low cost, they are inferior to synthetic polymers in terms of water absorption and water retention properties. In this regard, the most promising are semi-synthetic polymeric superabsorbents based on natural polymers modified with additives or grafted chains of synthetic polymers, which can combine the advantages of natural and synthetic polymeric hydrogels without their disadvantages. Such semi-synthetic polymers are of great interest for agricultural applications, especially in dry regions, also because they can be used to create systems for the slow release of nutrients into the soil, which are necessary to increase crop yields using environmentally friendly technologies.
  • 648
  • 02 Mar 2023
Topic Review
Alginate Microparticles for Food, Pharmaceutical and Cosmetic Applications
Alginates are the most widely used natural polymers in the pharmaceutical, food and cosmetic industries. Usually, they are applied as a thickening, gel-forming and stabilizing agent. Moreover, the alginate-based formulations such as matrices, membranes, nanospheres or microcapsules are often used as delivery systems. Alginate microparticles (AMP) are biocompatible, biodegradable and nontoxic carriers, applied to encapsulate hydrophilic active substances, including probiotics.
  • 529
  • 21 Oct 2022
Topic Review
Aliphatic Polyesters by ADMET Polymerization and Hydrogenation
The recent developments of the synthesis of bio-based long-chain aliphatic polyesters by the acyclic diene metathesis (ADMET) polymerization of α,ω-dienes, derived from plant oils and bio-based chemicals, like bis(10-undecenoate) with isosorbide, using ruthenium-carbene catalysts. The development of subsequent (one-pot) tandem hydrogenation produced saturated polyesters under mild conditions.
  • 95
  • 06 Feb 2024
Topic Review
Alkylimidazoles
Alkylimidazoles have good complexing properties, also they are  cheap so can be successfully used in the separation of metal ions from aqueous solutions.
  • 1.6K
  • 16 Dec 2020
  • Page
  • of
  • 46