Topic Review
Incorporation of Inorganic Antimicrobial Agents into Nanofibers
Nanofibrous materials represent a very promising form of advanced carrier systems that can be used industrially, especially in regenerative medicine as highly functional bandages, or advanced wound dressings. By incorporation of antimicrobial additives directly into the structure of the nanofiber carrier, the functionality of the layer is upgraded, depending on the final requirement—bactericidal, bacteriostatic, antiseptic, or a generally antimicrobial effect. Such highly functional nanofibrous layers can be prepared mostly by electrospinning technology from both synthetic and natural polymers. The presence of a natural polymer in the composition is very advantageous. Especially in medical applications where, due to the presence of the material close to the human body, the healing process is more efficient and without the occurrence of an unwanted inflammatory response.
  • 47
  • 05 Mar 2024
Topic Review
Machine Learning for Triboelectric Nanogenerators
The advancement of the Internet of Things (IoT) has increased the demand for large-scale intelligent sensing systems. The periodic replacement of power sources for ubiquitous sensing systems leads to significant resource waste and environmental pollution. Human staffing costs associated with replacement also increase the economic burden. The triboelectric nanogenerators (TENGs) provide both an energy harvesting scheme and the possibility of self-powered sensing. Based on contact electrification from different materials, TENGs provide a rich material selection to collect complex and diverse data. As the data collected by TENGs become increasingly numerous and complex, different approaches to machine learning (ML) and deep learning (DL) algorithms have been proposed to efficiently process output signals.
  • 85
  • 01 Mar 2024
Topic Review
Defects-Induced Voltage Losses of Perovskite Solar Cells
The power conversion efficiency (PCE) of single-junction perovskite solar cells (PSCs) has reached 26.1% in small-scale devices. However, defects at the bulk, surface, grain boundaries, and interfaces act as non-radiative recombination centers for photogenerated electron-hole pairs, limiting the open-circuit voltage and PCE below the Shockley–Queisser limit. These defect states also induce ion migration towards interfaces and contribute to intrinsic instability in PSCs, reducing the quasi-Fermi level splitting and causing anomalous hysteresis in the device. The influence of defects becomes more prominent in large-area devices, demonstrating much lower PCE than the lab-scale devices. Therefore, commercializing PSCs faces a big challenge in terms of rapid decline in working performance due to these intrinsic structural defects.
  • 85
  • 29 Feb 2024
Topic Review
Biomedical Applications of Magnesium Oxide Nanoparticles
Magnesium oxide (MgO) nanoparticles have excellent biocompatibility, stability, and diverse biomedical uses, such as antimicrobial, antioxidant, anticancer, and antidiabetic properties, as well as tissue engineering, bioimaging, and drug delivery applications. Magnesium oxide nanoparticles demonstrate substantial biocompatibility and display significant antibacterial, antifungal, anticancer, and antioxidant properties.
  • 76
  • 28 Feb 2024
Topic Review
Preparation of Graphene-Based Aerogels Using γ-ray Irradiation Technology
Graphene aerogels (GAs) are of significant interest in the scientific community due to their unique attributes, including a three-dimensional porous structure, exceptional specific surface area, and remarkable chemical stability. Researchers have made notable breakthroughs in aerogel preparation, focusing on aspects like porous structures and chemical stability. 
  • 141
  • 23 Feb 2024
Topic Review
AI-Based Nano-Scale Material Property Prediction for Li-Ion Batteries
The status quo for techniques used in the discovery of new and novel materials to enhance battery technologies has progressed from expensive and time-consuming empirical trial and error methods to the more recent first principles approach of using quantum mechanics (QM), Monte Carlo simulations and molecular dynamics (MD). QM calculations evaluate electron–electron interactions bby solving the complex Schrödinger equation, thereby enabling accurate results for a wide variety of properties. The emergence of ML, deep learning (DL) and artificial intelligence (AI) has helped alleviate the bottlenecks posed by QM and MD simulations and has made it possible to expand the scope of the search for novel materials in the chemical compound space (CCS) .
  • 116
  • 23 Feb 2024
Topic Review
[M(Salen)] Complexes, Their Polymers, and Composites Based Thereon
The polymers of square–planar complexes of 3d metal (M) atoms with tetradentate N2O2 Schiff base ligands, the so-called salen complexes ([M(Salen)]), are characterized by high redox conductivity, electrochromic behavior, and selective catalytic activity in heterogeneous reactions (including electrocatalysis). An important advantage of these polymers is also their high thermal stability (up to 350 °C) compared with monomer complexes due to their conductive polymer matrix. It is also expected that the synthesis of nanocomposites based on poly-[M(Salen)] and various forms of carbon (mesoporous and activated carbon), including nanostructured ones (carbon nanotubes, graphene, and nanoglobular carbon), will lead to the development of materials with improved energetic, catalytic, and other characteristics. This quality improvement is achieved due to the uniform distribution of the polymer on the surface of the carbon component of the composite material, which has a high specific surface area, electrical conductivity, and mechanical properties (strength, elasticity).
  • 58
  • 18 Feb 2024
Topic Review
Antibiotics-Coated Gold Nanoparticles to Combat Antimicrobial Resistance
Antimicrobial resistance (AMR) has become an alarming threat to the successful treatment of rapidly growing bacterial infections because of the abuse and misuse of antibiotics. Traditional antibiotics bear many limitations including restricted bioavailability, inadequate penetration and the emergence of antimicrobial-resistant microorganisms. Recent advances in nanotechnology for the introduction of nanoparticles with fascinating physicochemical characteristics have been predicted as an innovative means of defence against antimicrobial-resistant diseases. The use of nanoparticles renders several benefits including improved tissue targeting, better solubility, improved stability, enhanced epithelial permeability and minimal side effects.
  • 1.7K
  • 07 Feb 2024
Topic Review
Structure of Endohedral Fullerenes
Fullerenes have a unique structure, capable of both encapsulating other molecules and reacting with those on the exterior surface. Fullerene derivatives have also been found to have enormous potential to address the challenges of the renewable energy sector and current environmental issues, such as in the production of n-type materials in bulk heterojunction solar cells, as antimicrobial agents, in photocatalytic water treatment processes, and in sensor technologies. Endohedral metallofullerenes, in particular, can possess unpaired electron spins, driven by the enclosed metal atom or cluster, which yield valuable magnetic properties. These properties have significant potential for applications in molecular magnets, spin probes, quantum computing, and devices such as quantum information processing,, atomic clocks, and molecular magnets. 
  • 130
  • 02 Feb 2024
Topic Review
Electrospinning of Polymer Nanofibers
Polymeric nanofibers have emerged as a captivating medium for crafting structures with biomedical applications. Spinning methods have garnered substantial attention in the context of medical applications and neural tissue engineering, ultimately leading to the production of polymer fibers. In comparison with polymer microfibers, polymer nanofibers boasting nanometer-scale diameters offer significantly larger surface areas, facilitating enhanced surface functionalization.
  • 108
  • 01 Feb 2024
  • Page
  • of
  • 84