Topic Review
Zinc Oxide Nanoparticles Seed Priming against Environmental Stresses
Drastic climate changes over the years have triggered environmental challenges for wild plants and crops due to fluctuating weather patterns worldwide. This has caused different types of stressors, responsible for a decrease in plant life and biological productivity, with consequent food shortages, especially in areas under threat of desertification. Nanotechnology-based approaches have great potential in mitigating environmental stressors, thus fostering a sustainable agriculture. Zinc oxide nanoparticles (ZnO NPs) have demonstrated to be biostimulants as well as remedies to both environmental and biotic stresses. Their administration in the early sowing stages, i.e., seed priming, proved to be effective in improving germination rate, seedling and plant growth and in ameliorating the indicators of plants’ well-being. Seed nano-priming acts through several mechanisms such as enhanced nutrients uptake, improved antioxidant properties, ROS accumulation and lipid peroxidation. The target for seed priming by ZnO NPs is mostly crops of large consumption or staple food, in order to meet the increased needs of a growing population and the net drop of global crop frequency, due to climate changes and soil contaminations. 
  • 66
  • 11 Jan 2024
Topic Review
Zinc Coating
Advanced high strength galvanized steel sheet has been one of the dominant materials of modern automotive panels because of its outstanding mechanical properties and corrosion resistance. The zinc coating thickness of hot dip galvanized steel sheet is only about 10–20μm, which is a discarded object on the macro level. However, it is obvious to damage and impact on stamping performance. Therefore, this work takes zinc coating as the research object and builds its mechanical constitutive model based on a nano-indentation test and dimensional analysis theory. We separated the zinc coating from the galvanized steel substrate and constructed a sandwich material model by introducing a cohesive layer to connect the zinc coating and the steel substrate. We obtained the interface binding energy between the zinc coating and the steel substrate through the nano-scratch test. The accuracy of the model is verified by the finite element analysis of hemispherical parts. We used the five-layers element model with 0 thickness cohesive layer to simulate the zinc coating damage of galvanized steel sheet. The hemispherical part drawing experiment is used to verify the feasibility of the finite element analysis results. The results demonstrate that it is more accurate to consider the finite element numerical simulation of the zinc coating, introducing the cohesive element to simulate damage between the coating and the substrate. Drawing depth, stamping force, and the strain of the numerical simulation are closer to the experimental results.
  • 1.1K
  • 01 Nov 2020
Topic Review
Water Droplet Erosion
The term erosion is originally derived from the Latin word “rodere”, which means “to gnaw”, and used to indicate a form of materials wear (i.e. loss of material) that is caused by the impact of solid or liquid particles with sufficiently high speed. Liquid erosion can be divided into two types; cavitation erosion and liquid impingement erosion (LIE). The term Water droplet erosion (WDE) is commonly used to indicate liquid impingement erosion (LIE), where a progressive material loss is caused by the repetitive impact of high speed water droplets. WDE constitutes a major concern in many industries including aerospace and aviation, power generation industries particularly in gas turbines and steam turbines, nuclear power plants, and wind energy. Hence, WDE has become an important topic of research.
  • 3.0K
  • 23 Oct 2020
Topic Review
Vortex Pinning Centers in High-Temperature Superconducting Films
To better pin the vortex at external magnetic fields, the HTS films must contain APCs with desired morphology, dimension, orientation, and concentration. Nanoscale APCs with lateral dimension approaching 2ξ (coherence length) on the order of a few nanometers in HTSs must be generated to suppress the dissipation of vortex motion. This has prompted extensive efforts and exciting results have been obtained in generating nanoscale APCs in HTS films. The research progress of different types and dimensions APCs in detail is introduced and the impact on superconducting performance is summarized.
  • 182
  • 23 Nov 2022
Topic Review
VASE of Graphene-Based Films
The interaction of graphene oxide (GO) with magnetron-sputtered metals is a promising research area. VASE optical models of GO thin films deposited on magnetron-sputtered titanium (Ti), silver (Ag) and gold (Au) are discussed. Moreover, the optical properties of graphene nanoplatelet (GNPS) films and reduced graphene oxide (RGO) stabilized with Poly(Sodium 4-Styrenesulfonate) (PSS) films, which are less studied graphene-related materials, are shown. Finally, different optical behaviors of chemical vapor deposition (CVD)-grown monolayer, bilayer, and trilayer graphene films on silicon and polyethylene terephthalate (PET) substrates are recapitulated.
  • 350
  • 22 Apr 2021
Topic Review
UV-A Photocatalysis in Livestock and Poultry Farming
As the scale of the livestock industry has grown with the increase in the demand for livestock and poultry products, gaseous emissions, an unwanted side effect of livestock and poultry production, are also increasing. Various mitigation technologies have been developed to reduce such air pollution, and the mitigation technologies are divided mainly into “source-based type” (meant to fundamentally reduce the emissions) and “end-of-pipe type” (physicochemical and biological treatment of the output from barns to reduce the release into the environment). Ultraviolet light (UV) can be considered as both end-of-pipe (treating exhaust air from barns) and source-based type (treating air inside the barn).
  • 575
  • 20 Sep 2022
Topic Review
Two-Dimensional Nanomaterials in Organic Solar Cells
The thin-film organic solar cells (OSCs) are currently one of the most promising photovoltaic technologies to effectively harvest the solar energy due to their attractive features of mechanical flexibility, light weight, low-cost manufacturing, and solution-processed large-scale fabrication, etc. However, the relative insufficient light absorption, short exciton diffusion distance, and low carrier mobility of the OSCs determine the power conversion efficiency (PCE) of the devices are relatively lower than their inorganic photovoltaic counterparts. To conquer the challenges, the two-dimensional (2D) nanomaterials, which have excellent photoelectric properties, tunable energy band structure, and solvent compatibility etc., exhibit the great potential to enhance the performance of the OSCs.
  • 606
  • 19 Apr 2022
Topic Review
Tribocorrosion Behavior of Aluminum Alloys
Tribocorrosion is a material degradation process caused by the combined effect of wear and corrosion. The complexity of tribocorrosion lies in the fact that the chemical and mechanical attacks are not independent of each other but often act synergistically to cause accelerated failure.
  • 203
  • 26 Oct 2023
Topic Review
Transparent Electrode Materials
The nonrenewable nature of fossil energy has led to a gradual decrease in reserves. Meanwhile, as society becomes increasingly aware of the severe pollution caused by fossil energy, the demand for clean energy, such as solar energy, is rising. Moreover, in recent years, electronic devices with screens, such as mobile phones and computers, have had increasingly higher requirements for light transmittance. Whether in solar cells or in the display elements of electronic devices, transparent conductive films directly affect the performance of these devices as a cover layer. In this context, the development of transparent electrodes with low sheet resistance and high light transmittance has become one of the most urgent issues in related fields. At the same time, conventional electrodes can no longer meet the needs of some of the current flexible devices. Because of the high sheet resistance, poor light transmittance, and poor bending stability of the conventional tin-doped indium tin oxide conductive film and fluorine-doped tin oxide transparent conductive glass, there is a need to find alternatives with better performance. In this entry, the progress of research on transparent electrode materials with sandwich structures and their advantages is reviewed according to the classification of conductive materials to provide reference for research in related fields.
  • 1.6K
  • 09 Aug 2021
Topic Review
Titanium Nitriding Methods: Drawbacks and Benefits
The application of titanium alloys in aircraft construction is expanding due to their high corrosion resistance and excellent strength-to-weight ratio. However, if not specially treated, they are characterized by relatively low wear resistance [1,2], a significant limiting factor for their application. The surface treatment may improve this characteristic, and diffusion-saturation by nitrogen is the gold standard, and this section discusses the features, benefits, and shortcomings of the most common titanium nitriding methods.
  • 1.1K
  • 20 Jan 2022
  • Page
  • of
  • 23