Topic Review
2D-MoS2
Two-dimensional (2D) materials are generally defined as crystalline substances with a few atoms thickness.Two-dimensional transition metal dichalcogenide (2D-TMDs) semiconducting (SC) materials have exhibited unique optical and electrical properties. The layered configuration of the 2D-TMDs materials is at the origin of their strong interaction with light and the relatively high mobility of their charge carriers, which in turn prompted their use in many optoelectronic applications, such as ultra-thin field-effect transistors, photo-detectors, light emitting diode, and solar-cells. Generally, 2D-TMDs form a family of graphite-like layered thin semiconducting structures with the chemical formula of MX2, where M refers to a transition metal atom (Mo, W, etc.) and X is a chalcogen atom (Se, S, etc.). The layered nature of this class of 2D materials induces a strong anisotropy in their electrical, chemical, mechanical, and thermal properties. In particular, molybdenum disulfide (MoS2) is the most studied layered 2D-TMD.
  • 3.5K
  • 28 Sep 2021
Topic Review
Cationic Surfactants
Cationic surfactants are a class of surfactant molecules that contain a positively charged head group and a long hydrophobic tail. They have a wide range of properties that make them useful in various applications, including solubility in water and organic solvents, high surface activity, emulsification, antimicrobial activity, conditioning properties, and fabric softening. However, some cationic surfactants can be toxic to aquatic life, so they should be used with caution in applications where they may come into contact with the environment. Overall, cationic surfactants are important molecules that play a crucial role in various industrial, personal care, and household applications. Cationic surfactants are a type of surfactant that have a positively charged hydrophilic (water-loving) head and a hydrophobic (water-hating) tail. The positive charge on the head of the surfactant makes it attracted to negatively charged surfaces, such as cell membranes and proteins. Due to their positive charge, cationic surfactants are often used in personal care and household cleaning products, as well as in the textile and paper industries. They are effective in removing dirt, oil, and other contaminants from surfaces, as they can bind to these substances and help to lift them away from the surface. Cationic surfactants can also have antimicrobial properties, as they can disrupt the cell membranes of bacteria and other microorganisms. This makes them useful in disinfectants, as well as in personal care products such as shampoos and body washes.
  • 2.8K
  • 24 Mar 2023
Topic Review
History, Preparation, Characterization and Applications of Moisturizers
Moisturizers are one of the most widely used preparations in cosmetics and have been extensively used to soften the skin for consumers. Cosmetically, moisturizers make the skin smooth by the mechanism of increasing the water content in the stratum corneum, hence exerting its most vital action, which is moisturizing action and maintaining a normal skin pH.
  • 2.6K
  • 13 Jul 2022
Topic Review
Design Challenges and Limitations of Injectable Hydrogels
Injectable hydrogels (IHs) are smart biomaterials and are the most widely investigated and versatile technologies, which can be either implanted or inserted into living bodies with minimal invasion. Their unique features, tunable structure and stimuli-responsive biodegradation properties make these IHs promising in many biomedical applications, including tissue engineering, regenerative medicines, implants, drug/protein/gene delivery, cancer treatment, aesthetic corrections and spinal fusions. Regarding their current prospective and ongoing research, hydrogel formulations have some limitations in their applications, clinical practices and sustainability. Many hydrogel systems (natural/synthetic), such as thermosensitive hydrogels, are free-flowing sols at a low temperature, while upon raising to body temperature (physiological temperature), they are converted to a stable visco-elastic gel phase, such as poly (phosphazene), pluronic and poly (N-isopropyl acrylamide). 
  • 2.5K
  • 08 Apr 2022
Topic Review
Polycrystalline Materials
Polycrystalline materials can be defined as the counterpart of single crystals. These latter  arise from solution crystallization by transfer of a solute from the liquid phase to the crystalline phase. Crystallization from melt originates instead crystallites or grains, that is regular crystalline regions  randomly oriented and separated one anoher by borders with geometric shapes, Polycrystalline materials are the result of a multiple nucleation process, whereas monocrystals are ideally obtainable by dipping a seed crystal into a supercooled melt.  Polycrystalline materials often consist of spherulites, i.e. crystalline aggregates growing with a rounded shape up to impingment with adjacent spherulites. The borders amongst spherulites and the size and the final shape of spherulites affect considerably the properties of polycrystalline materials.
  • 2.2K
  • 12 May 2021
Topic Review
Dimensionality of materials
As generally known dimensionality of materials is a crucial factor to determine functions and properties of the materials. In addition to zero-dimensional, one-dimensional, three-dimensional, and further integrated functional materials, various two-dimensional materials have been paid special attention. Two-dimensional materials have their unique electronic propertiesand play important roles in interfacial sciences.
  • 1.8K
  • 12 Aug 2021
Topic Review
Methanol to Gasoline (MTG)
The MTG (Methanol to Gasoline) process allows us to transform methanol into hydrocarbons within the range of gasoline boiling points.
  • 1.6K
  • 04 Mar 2022
Topic Review
GeSn Alloys for Photonic and Electronic Applications
GeSn materials have attracted considerable attention for their tunable band structures and high carrier mobilities, which serve well for future photonic and electronic applications.
  • 1.5K
  • 28 Mar 2022
Topic Review
Clinoptilolite Characterization and EDS Analysis
Zeolites are materials of biomedical interest, in particular owing to their ability to remove metabolic products such as uremic toxins (i.e., urea, uric acid, creatinine, p-cresol, and indoxul sulfate); they are used for the regeneration of dialysis solutions and as in vivo membranes for artificial kidney. Zeolites have further important applications in the biomedical field, in fact they are used as hemostats (due to their ability to absorb water), antiseptics (when modified with silver or zinc ions), carriers for drugs and genes (adjuvant in vaccines), glucose absorbers, etc. Here, EDS microanalysis in the study of a sample of natural clinoptilolite is reported. 
  • 1.4K
  • 28 Sep 2021
Topic Review
Gold and Silver Nanoparticle-Based Colorimetric Sensors
Gold and Silver nanoparticles (AuNPs and AgNPs) are perfect platforms for developing sensing colorimetric devices thanks to their high surface to volume ratio and distinctive optical properties, particularly sensitive to changes in the surrounding environment. These characteristics ensure high sensitivity in colorimetric devices. Au and Ag nanoparticles can be capped with suitable molecules that can act as specific analyte receptors, so highly selective sensors can be obtained.
  • 1.2K
  • 23 Nov 2021
  • Page
  • of
  • 12