Topic Review
NTC-Properties of a Geomorphic Clinoptilolite Sample
Negative temperature coefficient (NTC) materials are usually based on ceramic semiconductors, and electrons are involved in their transport mechanism. A new type of NTC material, adequate for alternating current (AC) applications, is represented by zeolites. Indeed, zeolites are single charge carrier ionic conductors with a temperature-dependent electrical conductivity. In particular, electrical transport in zeolites is due to the monovalent charge-balancing cations, like K+, capable of hopping between negatively charged sites in the aluminosilicate framework. Owing to the highly non-linear electrical behavior of the traditional electronic NTC materials, the possibility to have alternative types of materials, showing linearity in their electrical behavior, is very desirable. Among different zeolites, natural clinoptilolite has been selected for investigating NTC behavior since it is characterized by high zeolite content, a convenient Si/Al atomic ratio, good mechanical strength due to its compact microstructure, and low toxicity. Clinoptilolite has shown a rapid and quite reversible impedance change under heating, characterized by a linear dependence on temperature.
  • 36
  • 15 Apr 2024
Topic Review
Geopolymer Materials for Extrusion-Based 3D-Printing
3D-printing is a sustainable approach to geopolymer material manufacturing, promoting waste reduction, energy consumption reduction, and CO2 emission reduction. In addition, 3D-printing technology based on geopolymers confronts hurdles that must be overcome to produce high-performance goods. One of the most important aspects of the quality and accuracy of 3D-printed geopolymers is the design of the mixture. Utilising industrial waste from mining and building as well as alternate aluminosilicate sources are two ways to advance the development of printing geopolymer combination compounds.
  • 92
  • 25 Dec 2023
Topic Review
Preceramic Polymers for Additive Manufacturing of Silicate Ceramics
The utilization of preceramic polymers (PCPs) to produce both oxide and non-oxide ceramics has caught significant interest, owing to their exceptional characteristics. Diverse types of polymer-derived ceramics (PDCs) synthesized by using various PCPs have demonstrated remarkable characteristics such as exceptional thermal stability, resistance to corrosion and oxidation at elevated temperatures, biocompatibility, and notable dielectric properties, among others. The application of additive manufacturing techniques to produce PDCs opens up new opportunities for manufacturing complex and unconventional ceramic structures with complex designs that might be challenging or impossible to achieve using traditional manufacturing methods. This is particularly advantageous in industries like aerospace, automotive, and electronics. 
  • 147
  • 19 Dec 2023
Topic Review
Room Temperature Gas Sensors Based on 2D MXenes
Owing to their large surface area, two-dimensional (2D) semiconducting nanomaterials have been extensively studied for gas-sensing applications in recent years. In particular, the possibility of operating at room temperature (RT) is desirable for 2D gas sensors because it significantly reduces the power consumption of the sensing device. Furthermore, RT gas sensors are among the first choices for the development of flexible and wearable devices.
  • 149
  • 18 Dec 2023
Topic Review
Microwave Radiation on the Solid Ceramic Brick
Microwave radiation is widely utilized in construction practice, especially for drying building materials, remediating damp masonry, or sterilization of biotic pests that have infested building structures. The available scientific and technical literature reports that certain materials exposed to microwave radiation do not change their physical and mechanical properties, although this has not yet been adequately verified. 
  • 154
  • 27 Oct 2023
Topic Review
Multicatalytic Behavior of Ba0.85Ca0.15Ti0.9Zr0.1O3 Ceramic
Ferroelectric materials are known to possess multicatalytic abilities that are nowadays utilized for removing organic pollutants from water via piezocatalysis, photocatalysis, piezo-photocatalysis, and pyrocatalysis processes. The Ba0.85Ca0.15Ti0.9Zr0.1O3 (BCZTO) ceramic is one such ferroelectric composition that has been extensively studied for electrical and electronic applications. Furthermore, the BCZTO ceramic has also shown remarkable multicatalytic performance in water-cleaning applications. 
  • 126
  • 25 Oct 2023
Topic Review
Zirconium Carbide for Hypersonic Applications
At ultra-high temperatures, resilient, durable, stable material choices are limited. While Carbon/Carbon (C/C) composites (carbon fibers and carbon matrix phases) are the materials of choice, zirconium carbide (ZrC) provides an option in hypersonic environments and specifically in wing leading edge (WLE) applications. 
  • 211
  • 08 Oct 2023
Topic Review
Structure of Piezoelectric Accelerometers
Compared with other types of sensors, piezoelectric accelerometers have the advantages of a large range, a wide-frequency band, a simple structure, stable performance, good output linearity, etc. The principle of a piezoelectric accelerometer is based on the property of the active element, and its structure is mainly composed of a mass block, a piezoelectric sensitive element, and a base.
  • 494
  • 28 Sep 2023
Topic Review
Thermoelectric Oxide Ceramics and Devices
Thermoelectric materials have gained wide attention to realize multilevel efficient energy management to alleviate the increasingly severe energy crisis. Oxide ceramics were well-explored as potential thermoelectric candidates because of their outstanding merits, including abundance, eco-friendliness, high-temperature stability, and chemical stability. A comprehensive summary of the diversified state-of-the-art oxide ceramics and establish the links between composition designing, preparation process, structural characteristics, and properties to summarize the underlying chemistry and physics mechanism of band engineering, doping, composited with the second phase, defects engineering, and entropy engineering is provided. Furthermore, advanced device design and applications such as thermoelectric modules, miniature generators, sensors, and coolers were summarized. Ultimately, the challenges and future perspective of oxides ceramics for the device design and thermoelectric applications in the development of energy harvesting technology have been prospected.
  • 207
  • 07 Sep 2023
Topic Review
Thin-Film Fabrication for Low-Temperature Solid Oxide Fuel Cells
Solid oxide fuel cells (SOFCs) are amongst the most widely used renewable alternative energy systems with near-zero carbon emission, high efficiency, and environment-friendly features. However, the high operating temperature of SOFCs is still considered a major challenge due to several issues regarding the materials’ corrosion, unwanted reactions between layers, etc. Thus, low-temperature SOFCs (LT-SOFCs) have gained significant interest during the past decades. Despite the numerous advantages of LT-SOFCs, material selection for each layer is of great importance as the common materials have not shown a desirable performance so far. In addition to the selection of the materials, fabrication techniques have a great influence on the properties of the SOFCs. As SOFCs with thinner layers showed lower polarisation resistance, especially in the electrolyte layer, different thin-film fabrication methods have been employed, and their effect on the overall performance of SOFCs has been evaluated.
  • 274
  • 23 Aug 2023
  • Page
  • of
  • 7